
The Editor exaEdit

User's Manual

Version 02.1
17. February 2009

Peter Preus

2

This manual was created by means of LATEX.

Version 02.1 — 17. February 2009

Reproduction of this manual is permitted.

peter.preus@web.de
http://exaedit.de/en/

Preface

I fear this manual will have no better fate than most of the others. It is read much too seldom because it is only
consulted – if at all – when online help, trying out and asking around does not lead anywhere. I have chosen to use a
direct form of address, as well as I could, so that the manual will not feel too alien to you, dear reader, at the few times
you will turn to it. This form of address is not only meant to be a stylistic element but it is also intended to indicate
that, while programming, I was always aware of the fact that my products will be used by human beings. In addition
to this, I hope my use of language will also encourage you to contact me concerning questions, hints or suggestions
aboutexaEdit. This is rather important to me because it is a very effective way for me to improve and extendexaEdit.

The manual on hand consists of 5 chapters.

Chapter 1,Survey, provides a rough survey of the editor’s features and abilities, leaving out the details.

Chapter 2,First Steps, is a tutorial to learn how to use the editor. It is particularly suitable for private studies because
of its numerous pictures and examples. In this chapter, you will only find descriptions of the most important elements
of the editor. After you have read this chapter, you will find more comprehensive information in chapter 3 to 4, if
needed.

Chapter 3,The Editor and Its Commands, contains a complete description of all the editor’s features. This chapter
is relevant in all doubtful cases in usage. You should read it through, at least once, if you wish to be able to use the
editor supremely well.

Chapter 4,exaEdit Synopsis, is intended for quick reference. Its key words represent functions of the editor (e.g.
‘delete one line’) with descriptions of one or more solutions to them.

Chapter 5,The exaEdit Messages, provides a quite comprehensive list ofexaEdit messages, together with page
reference(s) to closer explanations of the individual message.

This manual describesexaEdit in version 02.

3

4

Table of Contents

1 Survey 11

1.1 How to GetexaEdit. 11

1.2 The History . 11

1.3 The Concepts . 12

1.3.1 Theworkfile . 12

1.3.2 Window Mode and Line Mode . 12

1.3.3 The Current Line . 13

1.3.4 Input . 14

1.3.5 Keyboard Usage . 14

1.3.6 Command Syntax . 15

1.4 Additional Features . 15

1.4.1 Editing Directories . 15

1.4.2 Programmability . 15

1.4.3 Profile Files . 15

1.4.4 Fail Behaviour . 15

2 First Steps 17

2.1 Prerequisites . 17

2.1.1 For Unix Systems . 17

2.1.2 For Windows Systems . 17

2.2 Some Editor Logic . 17

2.3 For Your Orientation . 18

2.4 Creating a File . 20

2.5 Upper and Lower Case, Abbreviations . 24

2.6 Keys to Delete and Insert Characters . 24

2.7 Editing a File That Already Exists . 25

2.8 Changing Data Directly . 26

2.9 How to QuitexaEdit . 26

2.10 Current Line, Positioning . 27

5

6 Table of Contents

2.11 Inserting Lines . 28

2.12 Deleting Lines . 29

2.13 Copying Lines . 29

2.14 Moving Lines . 30

2.15 Searching Data . 30

2.16 Changing Data . 31

2.17 Help . 31

2.18 An Important Command . 32

3 The Editor and Its Commands 33

3.1 Functions . 33

3.1.1 Starting anexaEdit Session . 33

3.1.2 Workfiles . 34

3.1.3 Loading a File . 35

3.1.3.1 Loading in the Normal Case . 35

3.1.3.2 Loading a File via DD–Names . 38

3.1.3.3 Files with Special Record Formats . 38

3.1.3.4 Parameters for Large Files . 39

3.1.3.5 Loading All Files of a Directory . 39

3.1.4 Saving a File . 41

3.1.5 LeavingexaEdit . 44

3.1.6 Structure and Input of Commands . 45

3.1.7 Concatenating Commands, Command Separator . 45

3.1.8 Presentation in the Window, Current Line . 46

3.1.9 Record Numbers . 51

3.1.10 Deleting and Inserting of Characters . 52

3.1.11 Setting Of and Going To Markers . 52

3.1.12 Positioning . 53

3.1.13 Leafing Through the File . 54

3.1.14 Searching . 55

3.1.15 Changing Data, Survey . 56

3.1.15.1 Direct Changes . 56

3.1.15.2 Commands . 56

3.1.15.3 Prefix Commands . 56

3.1.15.4 Sequence of Processing . 57

3.1.16 Deleting Lines . 57

Table of Contents 7

3.1.17 Inserting Lines . 57

3.1.18 Features of the Input Mode . 58

3.1.18.1 Automatic Indenting . 58

3.1.18.2 Automatic Line Break . 59

3.1.19 Editing Blocks . 59

3.1.20 The Line Mode . 60

3.1.21 Programming the Editor . 60

3.1.22 Command Storage . 60

3.1.23 Programmable Function Keys . 61

3.1.24 Command Sequences in theWorkfile: EXEC . 62

3.1.25 Parameter Variables . 63

3.1.26 The Profile Files . 64

3.1.27 Online Help . 65

3.1.28 The Keyboard . 66

3.1.29 Keyboard Test . 67

3.1.30 exaEdit Functions . 68

3.1.31 Inserting Record Numbers . 69

3.1.32 exaEdit Errors . 70

3.1.33 exaEdit Tests . 70

3.2 The Commands . 71

3.2.1 Notation . 71

3.2.2 Messages . 71

3.2.3 The Commands in Detail . 72

+ (plus sign) . 72

- (minus sign) . 72

_ (underscore) . 73

& (ampersand) . 73

ALIGN . 74

BACK . 75

BOTTOM . 75

CALL . 75

CASE . 76

CCOPY . 76

CDELETE . 77

CHANGE . 78

CMDSEP . 80

8 Table of Contents

CMOVE . 80

CODEPAGE . 81

COMPRESS . 81

CONCAT . 82

COPY . 83

COUNT . 84

DELETE . 85

DELETEL . 85

DISPLAY . 85

DL . 86

DOWN . 86

END . 86

EXEC . 87

EXPAND . 87

FILE . 88

FILL . 88

HELP . 88

HEXA . 89

INDENT . 89

INLENGTH . 89

INPUT . 89

INSMODE . 90

KEYBOARD . 90

LANGUAGE . 91

LOAD . 91

LOCATE . 91

LWWIDTH . 93

MANUAL . 93

MOVE . 95

NEXT . 96

NLOCATE . 96

NRLOCATE . 98

PFK . 99

POINT . 100

PROFILE . 100

QUIT . 101

Table of Contents 9

REKEY . 101

REPLACE . 102

RETURN . 102

RLOCATE . 103

RNLOCATE . 104

SCOPE . 106

SEQUENCE . 106

SET . 107

SKEY . 107

SORT . 108

SSPLIT . 109

TEST . 111

TOP . 111

TRANSLAT . 111

UP . 111

WF . 112

WIDTH . 112

WORKFILE . 112

WRAP . 113

X . 113

Y . 114

ZONE . 115

3.3 The Prefix Commands . 115

4 exaEdit Synopsis 117

5 The exaEdit Messages 121

Index 128

Index 129

10 Table of Contents

Chapter 1

Survey

In this chapter, you will first find some information on how to obtainexaEdit for your usage and then a summarized
version of the main features ofexaEdit. Please note that, in order to understand this chapter, you should know what
an editor is and how editors work in general. If you do not have this knowledge yet, you should skip this chapter and
immediately start with the introductory chapter,First Steps, instead.

1.1 How to GetexaEdit.

exaEdit is an editor which is available for many operating systems. Current versions exist for the Unix operating
systems AIX and Linux and for the PC operating system Windows (all 32 bit versions). For the systems HP–UX,
IRIX, OSF1, OS/2, and SunOSexaEdit exists only in older versions because the author ofexaEdit has currently no
access to those systems. If you want other versions (including those for operating systems not mentioned here) please
feel free to address yourself at any time to the author. In most cases it is relatively easy to produceexaEdit for new
operating systems.

The program number consists of a two digit version number and an update letter, for example 02B. If only errors are
corrected inexaEdit then only the update letter will be changed in the program number. If, on the other side, new
features or function are added toexaEdit then the version number will go up and the update letter starts again from A.

The current program number ofexaEdit is 02B. All further information on downloading and installation ofexaEdit
you will find on the page

http://exaedit.de/

1.2 The History

The editorexaEdit – as it is available at present – has not been designed and put into effect in one attempt but it has
grown through the years.

The earliest precursor which I, the present author, know of was calledXEDIT and turned up at the computing center
of the university of Heidelberg in 1975. ThatXEDIT had nothing to do with the editors nowadays known under that
name and which are more or less spread all over the world. It was only a local appearance in the computing center
of the university of Heidelberg in Germany. The further parts of this paragraph deal also only with the situation in
Heidelberg. Fairly soonXEDIT had become a fullscreen editor for the timesharing system TSO of IBM’s operating
system MVS. As the user interface ofXEDIT was quite pleasant, it was nearly completely imitated in the construction
of the interface of the editor HADES (formerly called AMOS) which was an essential component of the timesharing
system of the same name (operating under MVS as well).

When the currentexaEdit author was confronted with the necessity to turn to the operating system Unix, he got a
culture shock – not only but chiefly in the field of editors (key words:vi, emacs). He came out of this shock with

11

12 Chapter 1. Survey

every intention to keep alive the – in his view – tried and tested parts ofXEDIT (e.g. concept and interface) in the
Unix version. Since it is not possible to transfer a large and complex program which has been developed by means of
software methods in the 70ies, the rewriting of the editor was inescapable. As programming language for this venture
C was chosen, not out of sympathy but as the result of the choice of the least evil.

At first the namexed had been chosen for the program in order to make a distinction between this editor and others
calledxedit in the operating system VM of IBM and in the operating system Unix. Butxed turned out to be a
frequently used short form (e.g. in directories) for editors calledxedit (in Unix). For this reason, the editor which
will be described in this manual was renamed topedit in March 1996.

Since 1993 the editor has been usable in the operating system AIX, although it has experienced large improvements
and enhancements since that time.

A stable version (10A) was offered in March 1994 at the Computer Centre of the University of Heidelberg for usage
under the operating system AIX, and it was offered aspublic domain software as well.

In the following time versions for the Unix operating systems HP-UX, IRIX, Linux, OSF1, and SunOS, for OS/2, and
for all 32 bit Windows systems have been developed.

The renaming fromxed to pedit was not very practical as could be seen afterwards, becausepedit was also a name
for various editors worldwide. Therefore the editor was renamed again in the year 2004 to

exaEdit

As the editor is connected with an internet domain name (if only for the suffix.de) there is some hope the name will
stay unambiguously for some time.

The current version is 02.

1.3 The Concepts

In this section you will learn something about the main connecting thread which led the authors ofexaEdit and its
precursors during the development of the editor. Some otherexaEdit features for which the term concept would be
too much will be described in section 1.4,Additional Features.

1.3.1 Theworkfile

exaEdit is a file editor but it does not directly process the files which you may know e.g. from a hard disk. At the
beginning of eachexaEdit session, the data of a file are read record by record from the storage medium and then put
into the main memory of the computer. Afterwards you can make your changes, which only have an effect on the
copy in the main memory. At the end of yourexaEdit session, you can write the (changed) version from the main
memory back to the data storage medium. The copy of a file in the main memory is called

workfile

This concept offers the advantage that mistakes which might happen during your editing the file do not automatically
concern the original file. On the other hand, any changes are lost if the computer or the operating system fail and you
did not save your changes before. But this case will not occur too often and there are some ways to limit the damage.

exaEdit offers the option to have severalworkfiles at the same time. They may contain the same file or different files.
But, always, one of theseworkfiles is the current one, which is visible in the window and to which the commands
refer.

1.3.2 Window Mode and Line Mode

exaEdit is a whole window editor, i.e. it uses the whole window for its output and receives your input from (nearly)
the whole window. A typical view in a window of 24× 80 characters looks like this:

1.3. The Concepts 13

059900 j = wakt -> lwwidth;
060000 memcpy (zeile, &(*lauf).datn [n], j);
060100 pz = zeile;
060200 for (k = 1; k <= j; k ++) {
060300 if (*pz < 32 || *pz >= 127 && *pz <= 159) {
060400 *pz = ’.’;
060500 lauf -> flag = ’.’;
060600 }
060700 pz++;
060800 }
060900 *(pb + wakt -> skey) = (*lauf).flag;
061000 memcpy (pb + wakt -> skey + 1, zeile, j);
061100 m -= wakt -> lwwidth;
061200 if (m > 0) {
061300 i ++;

....;....1....;....2....;....3....;....4....;....5....;....6....;....7...
po60600
_

MAIN xed06a.c 6193 18/ 1

The upper part of the image shows the ‘data zone’ in which theworkfile (normally only a part of it, of course) is
displayed. The part below the ruler is called the ‘dialogue zone’ where (but not only there) you can enter your
commands and whereexaEdit gives answers or asks questions. The last line is the status line, it contains information
on certain states ofexaEdit.

You can choose nearly any window size, and you can change it during anexaEdit session as you like it (prerequisite
your operating system allows this, e.g. X-Window),exaEdit will always adapt to it immediately.

The next section describes which vertical part of yourworkfile exaEdit displays.

In the horizontal dimension the beginnings of the records are shown (as a standard). If your records are too long, the
surplus data will be put in additional subsequent lines below the actual line. To cope with this, one possibility you
could choose is to define a ‘logical’ windowwidth as you like it. Thus you can determine the data which should be
displayed in subsequent lines. The second possibility is to move the horizontal section over the logical windowwidth
according to your preferences (not yet implemented).

If exaEdit cannot use the whole window, it works in the line mode, which you can ask ofexaEdit explicitly.

1.3.3 The Current Line

One of the most important features ofexaEdit is the current line, which follows your actions automatically.

The line in the middle of the data zone is called the current line, which normally is optically emphasized. It is the
current line that commands refer to. For example, the command

copy

means "copy the current line (beneath the current line)", which results in the doubling of the current line.

Another example: the command

change /abc/xyz/ 6

means "change the character string ‘abc’ to ‘ xyz’, do this change within 6 lines starting with the current line".

The content of the current line is not fixed but follows your actions automatically. Roughly, this means that the line
you have changed last will become the current line (after you have pressed the return key). Of course, the notion of a
current line exists only in your workfile.

14 Chapter 1. Survey

The underlying concept is the following one:exaEdit assumes that you wish to start making changes on the top of
your document and then work through it – change by change – until you have finished, (in the same way in which you
may correct a letter, for example). So, your last change presumably is in the centre of your interest. For this reason it
is positioned in the middle of your window.

1.3.4 Input

There are three ways to enter data inexaEdit:

• direct data change

• (line) commands

• prefix commands

Direct data change means that you move the cursor into the data zone and overwrite, insert, or delete characters.

Line commands (often simply called commands) are instructions to change, insert, and delete characters or records
(see abovecopy or change), to position the current line, to load and saveworkfiles, and to apply a variety of other
functions. Actually, you can enter (line) commands anywhere in your window but usually you will use the dialogue
zone.

Prefix commands are commands to insert, duplicate, delete, copy, and move lines. Prefix commands are written in the
data zone in the prefix area (see picture in 1.3.2) at the beginning of each line (where the line number is located).

The main principle of feeding data inexaEdit is that anything you have typed in remains without consequences and
is still changeable until you press thereturn key. Only then will your input be processed.

For your input, which you hand over toexaEdit by hitting thereturn key, you are allowed to combine the three
options discussed above without any restrictions – although not every combination does make sense. But frequently
it is an advantage to enter direct changes and prefix commands simultaneously by pressing thereturn key only once.

1.3.5 Keyboard Usage

exaEdit uses the keyboard in a conservative way. This implies that there are no key combinations (which have to be
learnt by heart) in order to call certain functions of the editor. Actually, you have to keep the commands in mind as
well but this should be easier for you since the commands consist of simple words taken from the English vocabulary
(see section 3.2Commandsas well).

For reasonable usage ofexaEdit you will need, besides the character keys (including those modified withAlt etc.)
and thereturn key, the following keys as well:

• the cursor moving keys (↑, ↓,→,←),

• the delete key (DEL, Entf, a/) or the backspace key,

• the insert key (INS, Einfg, â) or anexaEdit function.

In many cases you will need the keysF1 to F12 and thePos1 key (Home) for comfortable usage, but those keys are
not essential. If you wish so, you can define theF keys with the functions of the delete, insert and cursor keys (among
others).

exaEdit recognizes additional keys as well.

1.4. Additional Features 15

1.3.6 Command Syntax

(Line) commands inexaEdit look like this:

command parameter parameter ...

The commands and the parameters with fixed values usually are taken from English vocabulary, so that you can keep
them in mind easily.

You may abbreviateexaEdit commands as you like (starting at the right end of the word) as long as the command
remains unambiguous. Note that there are predefined minimal abbreviations for the commands. For example, the
minimal abbreviation ofcopy is co while the abbreviation ofchange can be as short asc (for change is in general
used more frequently thancopy).

It will be very useful for you as well that you can leave out spaces if this does not affect the distinction between the
command and its parameters. For example you can write

COPY 1000 B

as

COPY1000B

1.4 Additional Features

1.4.1 Editing Directories

exaEdit allows you to edit all data sets of a directory simultaneously. For that reason all files will each get an
unambiguous heading and are loaded together into a singleworkfile. When written back to the data storage they will
be separated again if you wish so. In addition you may choose the files to be loaded by specifying their names or part
of their names. Details you will find in section 3.1.3.5,Loading all Files of a Directory.

1.4.2 Programmability

exaEdit has some features which allow you to execute a series of editing steps in a programmed manner.exaEdit
could be looked at rather as a kind of script language. Details you will find in section 3.1.21Programming the Editor
and following.

1.4.3 Profile Files

A profile file for exaEdit is a file that containsexaEdit commands carried out at the beginning of theexaEdit session
or when a newworkfile is started. With the help of these commands you can change the editor’s adjustment once and
for all.

There could be an installation profile file, which is the same for everybody who uses the same installed editor (e.g.
when working with a workstation). But you can also have private profile files and determine their content by yourself.
In section 3.1.26Profile Filesyou will find more information on this subject.

1.4.4 Fail Behaviour

If exaEdit fails due to a program error, it saves everyworkfile as a new file on your disk – as far as possible. Thus, the
danger of losing data is effectively limited.

16 Chapter 1. Survey

Chapter 2

First Steps

2.1 Prerequisites

This chapter is structured in a way which should enable you to work through it without any other assistance. If you
get stuck, however, it will be not necessarily your fault; there could also be a shortcoming of the text. I am quite
willing to answer each of your questions and I welcome hints at mistakes and suggestions for improvement:

Peter Preus
peter.preus@web.de
http://exaedit.de/en/

If it is possible for you, you should work through this chapter on a data terminal and really key in the commands as
explained below.

2.1.1 For Unix Systems

You should be able to use a suitable terminal and its keyboard, and you should be able to carry out alogin success-
fully.

After thelogin, you usually get a window of the size 24× 80 (24 lines with 80 columns, each). The editor is enabled
to use windows of any size but it will be useful for you to use this standardized window size for a while since it is
used in the following example pictures.

2.1.2 For Windows Systems

You should start the command prompt. This could be found by clicking "Start" down left, then "All Programs", then
"Accessories", and then "Command Prompt".

The window you will get has normally 24 lines with 80 columns each. For reasonable working you will probably
want to use a larger window, but for the beginning it is surely appropriate to use the standard extents, because these
extents are used in the following figures.

2.2 Some Editor Logic

The smallest information unit which is of interest to us when we talk about editors is the byte or character.

17

18 Chapter 2. First Steps

Several characters together can form a unit, the so-called record. Such a unit can be labelled with a particular end-of-
record character or it may be distinguished in some other way from the rest of the other bytes in the computer system;
this is not important to us at the moment.

It is more important to know what a file and an editor are, and how you can change or create a file with the help of an
editor. I will explain this to you in the next few sentences on a very basic level.

A file (sometimes also called a data set) is a sequence of records on a data medium (fixed disk, hard disk, CD–ROM,
etc.).

As a common rule, a file is displayed in the window in such a way that each record of the file takes one line.

An editor is a program to create or change files. Most of the editors work – asexaEdit does as well – in such a way
that they keep a copy of the file in the main memory (central memory, internal memory, working storage, general
storage) of the computer.

If you want to e.g. change a file, you call an editor and tell it the file name. Then the editor copies the file from the
data medium into the main memory. Usually, the editor displays the data it has stored in the main memory in sections
in the window. After that the editor carries out the changes you will specify. The final step is to write all the data from
the main memory back on the data medium. Only then the changing of the file is finished.

The copy of a file which is kept in the main memory byexaEdit is called

workfile

If you want to create a new file whose data still have to be put in, you must start the editor with anemptyworkfile.
Then you type your data and at the end of it you give the command to make a new file out of thisworkfile, which now
contains your data. This example is described more detailed in the section 2.4How to Create a Fileafter the next
section.

2.3 For Your Orientation

As explained above, your window should be as large as 24× 80 characters. It has to be in the basic state of your Unix
session or your command prompt, i.e. accept Unix commands or line commands as input. Then please type

exaedit

as a command. As the result of the execution of this command, you receive a picture similar to the following one:

2.3. For Your Orientation 19

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

+--+
1| |
2| |
3| |
4| |
5| |
6| |
7| |
8|MAIN exaEdit 02B TOP LINE |
9| |

10| |
11| |
12| |
13| |
14| |
15| |
16|;....1....;....2....;....3....;....4....;....5....;....6....;....7...|
17| |
18|exaEdit |
19|_ |
20| |
21| |
22| |
23| |
24| MAIN 0 19/ 1 |

+--+

Strictly speaking, you only get the inner part of the broken line box in your window. In this manual there is additionally
shown a frame with the numbering 1 - 80 on top and 1 - 24 on the left side in order to be able to refer to the distinctive
parts of each picture.

In line 8, which is (in the real editor window) optically emphasized,exaEdit identifies itself with its name in columns
10 to 16 and its version number (consisting of two digits and one letter) in columns 18 to 20.

Behind the version number there are the wordsTOP LINE. This means that this is the first line of theworkfile. The
rest of theworkfile is empty since you did not tell the editor a file to edit. ForexaEdit aworkfile always consists of the
top line and the actual data. Thetop line only exists in theworkfile, it is never written in a file together with the data.

In the columns 1 to 8 of line 8 you can read the word

MAIN

This is the nameexaEdit gave theworkfile. This name implies that there can be more than oneworkfile; but you will
learn more about this in one of the following sections.

In line 16 of the picture above, there is a ruler which is intended to help you to horizontally orientate yourself in the
window in the data the editor displays.

In line 18 of the picture, there is the display of the word

exaEdit

which is issued as an invitation to enter commands ifexaEdit has nothing else to say (this will be commented on
later).

The last line of the picture is the status line, which informs you on different states and gives some other pieces of
information.

In the status line in column 5, the name of theworkfile is repeated.

In column 73, you can find the number of records of theworkfile. Since thisworkfile is empty, there is the number0
issued.

20 Chapter 2. First Steps

In columns 75 to 79, the cursor position is indicated. As the cursor is in line 19, column 1 at the moment, you can
read the output ‘19/1’.

The lines above the ruler, in this case lines 1 to 15, are called the

data zone

The lines between ruler and status line, here lines 17 to 23, are called the

dialogue zone

After so much dry information, you are allowed, now, to do something: Please, move the cursor with the arrow keys
across the window and observe, while doing this, how the display in the status line changes. And, please, note the
cursor behaviour when the cursor is moved out of the window. Keep in mind this behaviour and use it when you
have to move the cursor while editing. Since not a small amount of your work with the editor will consist of cursor
movement, it will be useful for the efficiency of your work to do this with a minimum of effort.

Now, move the cursor back to its initial position (so that there is ’19/ 1’ displayed at the lower right corner again).

2.4 Creating a File

As it was mentioned briefly in the previous section, 2.2,Some Editor Logic, you can create a file by starting the editor
with an emptyworkfile first, then filling it with your data and writing the data into a new file at the end.

At the moment you see the emptyworkfile in front of you. There are several methods to fill aworkfile with some data
but in this section you will only learn something about the input mode. Initially you have to enter the command

input

which means that you first have to type the wordinput (in line 19) and then press thereturn key. As the result of
this, the window should look like this:

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

+--+
1| |
2| |
3| |
4| |
5| |
6| |
7| |
8|MAIN exaEdit 02B TOP LINE |
9| |

10| |
11| |
12| |
13| |
14| |
15| |
16|....;....1....;....2....;....3....;....4....;....5....;....6....;....7....;....8|
17|input |
18|Input |
19|_ |
20| |
21| |
22| |
23| |
24| MAIN I 0 19/ 1 |

+--+

What has been changed compared with the previous picture?

2.4. Creating a File 21

• The command you have just given is repeated at the beginning of the dialogue zone, i.e. in line 17.

• In the following line the word

Input

has appeared as a request for the input of data.

• The cursor is at he beginning on the next line (19), ready for the input of data.

• In the status line an

I

has appeared in column 15 in order to show thatexaEdit is in the input mode now.

• The ruler appears now at the very left of your window since you will start writing your data in column
1.

Please, now enter the first line of your input, for example

This is the first line.

You have to type the sentence and then press thereturn key. After this your window looks as follows:

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

+--+
1| |
2| |
3| |
4| |
5| |
6| |
7|MAIN exaEdit 02B TOP LINE |
8| This is the first line. |
9| |

10| |
11| |
12| |
13| |
14| |
15| |
16|....;....1....;....2....;....3....;....4....;....5....;....6....;....7....;....8|
17|This is the first line. |
18|_ |
19| |
20| |
21| |
22| |
23| |
24| MAIN I 1 18/ 1 |

+--+

These things have changed this time:

• Your input is repeated in the first line of the dialogue zone (in line 17) – as it happened with the
commandINPUT before.

• The line you have just entered has been transferred into theworkfile, which can be seen from the fact
that it appears in line 8 of the data zone.

• In the status line, in column 73, the display of the counter of records in theworkfile has jumped to 1.

• The cursor is positioned in the next free line in the dialogue zone (in line 18), ready for your input.

22 Chapter 2. First Steps

Now, please, enter the second line, e.g.

The second line

by typing the characters and pressing thereturn key, again.

This line, as well, is repeated in line 17 and transferred into theworkfile, which is mirrored by its appearing in line 8.
The first line you have entered has slipped upward by one line.

After you have entered the third line

line three

you will get the following picture:

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

+--+
1| |
2| |
3| |
4| |
5|MAIN exaEdit 02B TOP LINE |
6| This is the first line. |
7| The second line |
8| line three |
9| |

10| |
11| |
12| |
13| |
14| |
15| |
16|....;....1....;....2....;....3....;....4....;....5....;....6....;....7....;....8|
17|line three |
18|_ |
19| |
20| |
21| |
22| |
23| |
24| MAIN I 3 18/ 1 |

+--+

Now you have entered enough, and you wish to quit the input mode. This happens if you press thereturn key without
having typed another character before your last pressing thereturn key. After this, the window looks like this:

2.4. Creating a File 23

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

+--+
1| |
2| |
3| |
4| |
5|MAIN exaEdit 02B TOP LINE |
6| |
7|000100 This is the first line. |
8|000200 The second line |
9|000300 line three |

10| |
11| |
12| |
13| |
14| |
15| |
16| |
17|;....1....;....2....;....3....;....4....;....5....;....6....;....7...|
18|line three |
19|_ |
20| |
21| |
22| |
23| |
24| MAIN 3 18/ 1 |

+--+

The characterI in the status line has disappeared sinceexaEdit is not in the input mode any more.

The three lines in theworkfile each received a number.

The next thing I assume you like to do is to write theworkfile onto the disk. You give rise to this by entering the
commandFILE. You have to specify the file name you desire. If you wish that the file name isexafil1, you now
have to enter the command

file exafil1

(do not forget thereturn key!). This command is repeated in the first line of the dialogue zone as well. In the next
line there will be the output:

New data set, press J or Y to create it:

This means thatexaEdit has detected that there exists no file calledexafil1, yet. If this file already existed, the
message would be:

Old data set, press J or Y to replace it:

This behaviour ofexaEdit is intended to protect you from mistakes as, e.g, typing errors which could cause another
file name, different from the one you actually wanted.

The lettersj or y stand for the words German ‘ja’ or English ‘yes’.exaEdit recognizes them immediately when you
press one of the keysj or y. So it is not necessary to additionally press thereturn key and, to a certain extent, this
would be even damaging since the reaction ofexaEdit to the key you have pressed would not be visible, then.

After so much explanation, please, press the keyj or y. As the reaction to this,exaEdit writes the contents of your
workfile in the file with the name you have specified before (and the file is now created in order to do this). To show
you that the action was successful, you receive the message

Data saved

Now you are allowed to finish this lesson and quitexaEdit by entering one of the following commands:

end or quit

24 Chapter 2. First Steps

2.5 Upper and Lower Case, Abbreviations

As you have seen in the previous section, you can write your data as usual in capital or small letters, that reach the
workfile in the same way you have typed them.

When you enter commands inexaEdit (e. g. INPUT, FILE, END, QUIT) or when you give answers (j, y), small and
capital letters are interchangeable, they are never distinguished byexaEdit. This is, of course, only true for command
names and operands which have a fixed meaning inexaEdit, whereas operands chosen by yourself such as file names
or character strings are case-sensitive as a matter of course.

In this manualexaEdit commands are written in the text in upper case so that they are better recognizable as com-
mands. But in the examples, commands are usually written in lower case. On the keyboard, of course, you will only
type small letters.

You can abbreviate the very mostexaEdit commands to reduce the amount of typing; for example, you abbreviate
INPUT with I, FILE with FIL, END with E andQUIT with Q. Later there will be some explanation on the minimal
abbreviations that are possible. This manual always uses the full commands in its texts to make it easier for you
to understand and recall them (it is quite clear what ‘END’ does; but what does ‘E’ do?). In the examples, newly
introduced commands are fully written but later on, when you are supposed to know them, they are often abbreviated.
When you use the editor more intensively, you will learn the minimal abbreviations by heart – since it will help you
to save a lot of time.

2.6 Keys to Delete and Insert Characters

When you are typing, mistakes can happen easily. You can correct them early and easily if you have not yet pressed
the return key with which you finish your input inexaEdit.

If you have typed

Thisz is the ...

for example, you move the cursor back to the superfluous character and press the

Del

key, which should be on your keyboard. (Sometimes it is labelled withEntf or with something else.)

An alternative to this procedure offers thebackspace key. It is above thereturn key and it has an arrow pointing to
the left on it (please do not mix it up with the ‘cursor to the left’ key that looks very similar to thebackspace key).
The backspace key deletes the character on the left of the cursor. Anything on the right of that character moves to the
left by one position. For comparison, theDel key deletes the character on the cursor position while thebackspace
key deletes the character before; in both cases anything on the right moves to the left by one position.

But if you have typed

Thi is the ...

– and forgotten thes, as you can see – you move the cursor back to the place where you have to insert the character
(i.e. the space after ‘Thi’) and press the

Ins

key, that should be on your keyboard (and which is sometimes labelled with ‘Einfg’ or something else). Finally, you
press the key with the missing character.

When you have pressed theIns key, you have putexaEdit into the insert mode (please, note the difference between
insert mode and input mode, the term input mode is explained in the section 2.4). ‘Insert mode’ means that any
additional characters are inserted at the cursor position. The sign∧ that is displayed in column 14 in the status line
helps you to recognize thatexaEdit is in the insert mode. You leave the insert mode by pressing theIns key again.

2.7. Editing a File That Already Exists 25

The insert mode is also turned off automatically each time you press theEnter key. It is also possible to induce
exaEdit to use the insert mode permanently (see chapter 3).

Later, in the lessons 2.8 and 2.16, you will learn how you can remove typing errors that you only recognize after you
have entered them into theworkfile with thereturn key.

2.7 Editing a File That Already Exists

The next thing you might do is to edit the fileexafil1, that you have just created, again. To do this, you type

exaedit exafil1

and you receive the following picture:

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

+--+
1| |
2| |
3| |
4| |
5| |
6| |
7| |
8|MAIN exaEdit 02B TOP LINE exafil1 |
9|000100 This is the first line. |

10|000200 The 2nd line |
11|000300 line three |
12| |
13| |
14| |
15| |
16|;....1....;....2....;....3....;....4....;....5....;....6....;....7...|
17| |
18|exaEdit |
19|_ |
20| |
21| |
22| |
23| |
24| MAIN exafil1 3 19/ 1 |

+--+

Compared to the last picture in the lesson 2.4,Creating a File, the following has changed: Both in thetop line and in
the status line there is the file name

exafil1

put down. If you now make some changes in theworkfile, you only need to enter the command

file

to save them at the end;exaEdit will write the workfile in the fileexafil1.

But you could also write theworkfile into another file by indicating its name in theFILE command:

file filnew

Please, enter this command. After this, you receive the following request, again:

New data set, press J or Y to create it:

26 Chapter 2. First Steps

In contrast to the lesson 2.4,Creating a File, I now suggest that you press any (character) key exceptJ or Y. As this
could happen involuntarily (you actually wanted to typeY but you missed the key),exaEdit warns you by giving a
message and a sound that theFILE command has not been finished.

ATTENTION: Data not saved!

But now, in order to have a second file for later lessons, you repeat theFILE command, please, and answer the question
with J or Y. Then finish thisexaEdit session with the commandQUIT or END.

2.8 Changing Data Directly

In this lesson you will learn how you can change data that already exists.

Please, enter the command

exaedit exafil1

as in the previous lesson.exafil1 is the file you created in the lessonHow to Create a File. Now the window should
look the same way it did in the previous lesson.

The changes you might like to do could be, e.g., to replace ‘first’ by ‘ 1st’ and ‘three’ by ‘ 3’. To do this you only
have to move the cursor with the arrow keys to the correct position in the data zone and simply overwrite the data
there. When you overwrite the word ‘first’ with ‘ 1st’, you have some characters left. You can delete them with the
Del key (compare section 2.6,Keys to Delete and Insert Characters). If you had to insert one or more characters, you
would use theIns key.

If you want the changes to reach theworkfile, you have to hit thereturn key. But if it suddenly occurs to you that
you actually do not like these changes, you can press thePos 1 (or Home) key instead of thereturn key. The result
of this is the state before you started making changes.

After you have pressed thereturn key, you have no chance to undo your changes at once. Of course, you can do
without saving yourworkfile but in this case you lose any other changes you might have done previously in your
exaEdit session.

2.9 How to Quit exaEdit

This lesson directly follows the previous one, in which you made some changes but did not give the commandFILE
to save them.

Please, try now to end thisexaEdit session with the command

quit or end

SinceexaEdit knows that the changedworkfile has not been written back onto the disk so far, it tries to protect you
from an ill-considered step. For this reason,exaEdit answers with the following hint and request:

Changes not saved
Press J oder Y to stop:

When you now press any other (character) key – please, do so –exaEdit will cancel the processing of theQUIT or END
command, put downexaEdit in the dialogue zone and wait for the commands you give next.

If you had, in contrast to this, pressed one of the keysJ oderY, exaEdit would have finished its working without
saving your changes.

2.10. Current Line, Positioning 27

2.10 Current Line, Positioning

As you may have noticed in the previous lesson, the three lines in your file have changed their position after you
have changed your text. Before your changes, there was thetop line (that is the line with ‘MAIN exaEdit...’)
emphasized (white letters on black background) and positioned in the middle of the data zone. Now, after your
changes, the third line of your text takes this highlighted position.

The emphasized line in the data zone is called

current line

In exaEdit it has two special features:

• it is the starting point of commands which need the indication of a certain line,

• it is automatically readjusted.

Because of the first characteristic of the current line, it has to be possible to move it by giving commands. The next
thing I would like you to do is to exercise the so-called positioning of the current line (please, try everything I suggest
below).

With the command

top

thetop line becomes the current line. With the command

bottom

the last line becomes the current line. Since they are both frequently used commands, they have the minimal abbrevi-
ationsT andB.

With the commands

+ n
down n
next n

– where you have to insert a number for ‘n’ – the current line is moved downward byn lines, i.e. closer to the end of
the file.

With the commands

- n
up n
back n

the current line is moved upward, i.e. closer to the top of your file.

If you specify more lines than there are in your file, the current line remains unchanged andexaEdit gives the message
End of data or Begin of data.

But if you like to move the current line only by one line, you can leave out the line numbern and only enter+, for
example.

In many cases you will wish that the current line exactly moves by the whole window height or only by the half of
one page on your window. There are special keys for this case:

F7 one page back
F8 one page forward
F10 half a page back
F11 half a page forward

28 Chapter 2. First Steps

Instead ofF7 andF8 you can use the keysPgUp↑ andPgDn↓, as well, prerequisite they are on your keyboard. Since
your file exafil1 does not contain enough lines, you will no really see the effect of those keys if you try them now.
But you will see how these special keys are translated intoexaEdit commands, e.g.

-14
+14
-7
+7

if your window has 24 lines.

When you jump one page forward,exaEdit works in such a way that the last line of the previous window becomes the
first line of the next display. This is meant to provide a certain coherence when you move down a text.

Now, in this context, it only remains to explain how the automatic positioning of the current line works.

When you make your changes directly, in the data zone (compare section 2.8), the lowest line of those you have
changed will become the current line – after you have pressed thereturn key. The reason for this behaviour is that
exaEdit assumes that the change in the lowest line is the last change you have done and that the last change should be
placed in the middle of the window (in the centre of your interest).

The current line can also move as a result of certain commands. There are predefined rules for this and these rules
can differ from command to command. This is the reason why these rules are explained in detail together with the
explanation of each command in the next chapter.

2.11 Inserting Lines

There are several possibilities to do this. The first solution is the input mode, which you learnt to know in the section
2.4. If you would like to insert lines between the first and the second line of your data, for example, you have to
position yourworkfile (compare chapter 2.10,Current Line, Positioning) in such a way, that the first line is the current
line. Then you putexaEdit into the input mode with the command

input

Anything else should be familiar to you from the section 2.4.

A second method to insert lines uses the

Number command

To apply it, you have to type a line (not in the input mode but in theexaEdit home position). This line contains not
only your data but also the number of a line in front of it. In other words, it is something which looks like a line in the
data zone:

222 text

From this inputexaEdit creates the corresponding line in the data zone. Your choice of the line number determines
the position of the new line. It is up to you whether or not you write the number with leading zeros.

By the way, it does not matter whether or not you put a space after the number:

222text or 222 text

Both spellings are treated as the same. But, in contrast to this, additional spaces make a difference.

If the line number you have specified does already exist, there will not be a new line inserted but the existing line will
be overwritten.

Further methods to insert (special) lines will be described in later sections.

2.12. Deleting Lines 29

2.12 Deleting Lines

There are several methods to delete one or more lines. The command

delete n

deletesn lines beginning with the current line. When you leave out the specificationn, there will be only one line
deleted (the current line). The commandDELETE has the minimal abbreviationDE.

Another method to delete lines offers the command

dl from to

in which you have to specify forfrom andto the first and the last number of the lines to be deleted.DL stands for
delete lines.

The third possibility to delete lines allows you to type ‘d’ into the number area of the line you want to be deleted:

0003d0

After you have pressed thereturn key, any line you have marked in this way is deleted. You can write the labeld
wherever you like in the number area.

You can apply this method to delete several lines in a row. The only thing you have to do is to type the number of
lines to delete as well:

0003d2

This deletes the marked line and the following one. If you type the characterd at the beginning of the number, you
have to use a space after the specification of the number of lines to delete.

00d300

this deletes only the marked line, while the following example deletes three lines:

00d3 0

Additional methods to delete lines are described in other sections.

2.13 Copying Lines

You will frequently face the fact that you need one line twice. Of course, you do not need to type it in twice. The
command

copy from to

copies the lines you have specified (from andto are line numbers) beneath the current line. If you wish to copy
one line, you only need to specify the number of this line. If you leave out both line specifications,exaEdit copies
(doubles) the current line.

Besides the real line numbers,exaEdit recognizes symbolic line numbers, i.e.

* the current line,
p the line above the current line (‘previous’),
n the line beneath the current line (‘next’),
f the first data line of yourworkfile (‘first’),
l the last line of yourworkfile (‘ last’),
b the last line of yourworkfile (‘bottom’),
t the first line of yourworkfile (‘ top’), whereexaEdit refers to thetop line or the first line contain-

ing data depending on the context,
s the line which has been marked bySET.

30 Chapter 2. First Steps

Examples for theCOPY command:

copy 100 200 copies the lines from100 to 200 beneath the current line.
co doubles the current line.
co * doubles the current line.
co p doubles the line above the current line.
co p * copies the line before the current line and the current line beneath the current line,

i.e. it changes the two linesa b to the 4 linesa b a b, if b was the current line, before.
co f l copies all lines beneath the current line (only possible if the current line is the last

line or the top line.

An additional method to copy lines you will find in section 3.3,Prefix Commands.

2.14 Moving Lines

For moving lines there is the command

move from to

It works in the same way asCOPY – with the single exception that the lines you specify are not copied but moved.
Examples for this are:

move 100 200 moves the lines from100 to 200 beneath the current line,
mo p exchanges the current line and the previous one.

An additional method to move lines will be implemented in future versions ofexaEdit.

2.15 Searching Data

When you are looking for a certain passage in your data, you can page through your file. But you can also find a
particular location if you precisely know what is written there. The command

locate /character string /

starts its search from the current line and searches for the character string you have just entered. If it is found, the line
that contains this character string becomes the current line, e.g.

locate /the/

The character string you are looking for has to be embedded in two delimiting characters (where you can leave out the
end delimiter sometimes). The character to delimit the string (in the example above it is a ‘/’) can be any character
except a numeral, the character ‘&’, or the command separator. The following command, for example, would search
for the character string ‘he’ (‘ t’ delimits the beginning while the end marker is missing):

locate the

It will be easiest for you, probably, when you get used to one character as delimiter of character strings. I would
suggest the] character on the right on your keyboard (in the special character field). But, if this character occurs
within the character string itself, you have to choose another delimiter for this string.

When the search for your character string has reached the end of yourworkfile, the search will be continued from the
beginning of the data.exaEdit makes you aware of this procedure by writing the following message on your window
when it passes the end of the file:

Search from begin (wrap)

(As an alternative, you can stop the search at the end of theworkfile; compare the explanation on the commandWRAP
in the next chapter.)

If you have to look several times for one and the same character string, you only need to type in

2.16. Changing Data 31

locate

alone, the following times. Since the minimal abbreviation ofLOCATE is L, you do not even need to type in more than

l

Besides the search from top to bottom,exaEdit can also search from bottom to top. This is possible with the command

rlocate /character string /

(rlocate = ‘ reverse locate’). If in this case the search passes the beginning of theworkfile and continues at the end
of it, thenexaEdit writes

Search from end (wrap)

in the window.

The memory for the search is the same forLOCATE andRLOCATE.

2.16 Changing Data

In section 2.8 you learnt to manage the direct change of data. Another possibility to do changes was the use of a
number command with an existing number. But with the help of the number command you could only change the
whole lines.

One more method to change data offers the commandCHANGE; its minimal abbreviation isC:

change /old/new/

In this example, the character string

old

will be replaced by the character string

new

in the current line. The character ‘/’ again functions as delimiter of the character string. As you have just learnt in the
previous section, you can also use other characters as delimiters.

You will like to make the same change in several lines frequently. For this purpose, you can add a definite number of
lines to your change command. For example, the following command

c // /5

– beginning in the current line – moves the data by one position to the right; this change is done within five lines.
The ‘old’ character string is empty (two delimiters follow each other directly). This character string occurs at the
beginning of each line. The ‘new’ character string contains one space.

More about the use of theCHANGE command can be found in chapter 3.

2.17 Help

exaEdit includes rather condensed help texts. They are very useful if you know a certain command and the function
you need and if you cannot recall the precise syntax. The command

help

– minimal abbreviationH – provides you with a list of allexaEdit commands. The capitalized initials of the command
words you find there denote the minimal abbreviations; the whole help list of commands is sorted according to the
abbreviations.

With the command

32 Chapter 2. First Steps

help command

you receive information about the command you specified. For example, the result ofHELP CHANGE looks as follows:

help change

Change [col1 [col2]] /string1/string2/ [n] [A] [D] [H] [I] change data

string1 is searched in n lines (default 1) and replaced by string2. Without

string2 string1 is removed. ’A’ changes all occurrences in the line, D displays

changed lines. H interprets hexadecimal. ’I’ searches case-insensitive.

Search is restricted by ZONE or the specified columns (which come first).

This information is structured as follows:

In the first line there is the syntax on the left, and a very brief characterization of the function of the command on the
right. Beneath, there is an explanation of the function and the parameters.

For the syntax, square brackets [] are used to mark specifications that can be left out.

Please, try to get used to this manner of representing information and look at the help texts of some commands you
have learnt to know so far.

Usually, the fullexaEdit user manual can be read on–screen (via WWW–Browser) by using the commandMANUAL.

2.18 An Important Command

Please pardon my misleading you a bit: There are no important or unimportant commands. In this chapter,First Steps,
I have tried to show you anything you need ifexaEdit should become a useful instrument for you.

But it is important to note that the things you have learnt will not be enough for a number of special applications and,
particularly, for a highly efficient usage of the editor. So, there is no other choice for you but to read through the
following chapterThe Editor and its Commandsat least once patiently and with concentration. This should enable
you to remember the things you have read and find them again if you need them.

Chapter 3

The Editor and Its Commands

This chapter contains a complete and comprehensive description of any feature of the editor. In any case of doubt
or whenever the impression of discrepancies between this chapter and other chapters or other sources of information
on exaEdit should rise, this chapter is relevant. Please keep in mind that in the following first subchapter on dif-
ferent functions ofexaEdit not all commands are mentioned. Therefore you are strongly recommended to study the
subchapter on all commands as well.

3.1 Functions

This chapter describes the functionsexaEdit has from your point of view. These functions may sometimes be realized
in different ways, and sometimes their realization requires differentexaEdit commands.

3.1.1 Starting aexaEdit Session

Usually, the start of anexaEdit session is the input of the line command

exaedit [filename]

The specification[filename] in square brackets means that you may or may not specify the name of a file.

If you call exaEdit with more than one parameter, only the first one will be honoured and any additional parameter is
ignored without further notice. In the section 3.1.3,Loading a Fileyou will find an explanation of what the parameter
means in detail.

First, exaEdit reads the profile files if one or more exist. This is explicitly explained in section 3.1.26,The Profile
Files.

Second,exaEdit has to inform itself on the properties of the screen or window used and it has to activate the ways
from and to the window.exaEdit is a whole-window editor, i.e.exaEdit produces the data for the whole window and
– the other way round – the editor can receive changes from anywhere in the window.

In order to fulfill the whole window function,exaEdit uses a complement of the operating system which is called

Curses

This stands for a collection of program functions which can be used to begin, perform and end the usage of the whole
window. Since you will prefer in normal cases the whole window option,exaEdit tests at this stage whether you can
use the whole window or not. If this is the case,Curses is initialized.

The remainder of this section refers to Unix systems only.

The first prerequisite is the availability of the environment variable

33

34 Chapter 3. The Editor and Its Commands

TERM

Environment variables are provided by the operating system. You can ask for a list of them with the Unix command

set

If TERM does not exist, against any expectation,exaEdit displays the following two messages

TERM not defined
exaEdit in line mode

in the window. The first message explains itself, the second one means thatexaEdit cannot work in the whole window
mode (i.e. the initialization ofCurses is not possible) but only line by line. More detailed information on the line
mode is available in 3.1.20,The Line Mode.

If the environment variableTERM exists,exaEdit checks the value of the parameter and whether it is appropriate for
the window mode. At the moment,

TERM=NETWORK and
TERM=IBM3278-x

(with anyx value) are recognized as inappropriate. In this caseexaEdit displays those two messages

Terminaltype is ...
exaEdit in line mode

in the window and continues in the line mode (compare section 3.1.20,The Line Mode).

Unfortunately, at the moment it is not possible forexaEdit to recognize allTERM values that are inappropriate for the
window mode. So, it may occur thatexaEdit tries the initialization ofCurses butCurses abortsexaEdit with an error
message. Messages of this type look as follows:

Sorry, I don’t know how to deal with your ’...’ terminal.
Sorry, I need to know a more specific terminal type than ’’.

But what can you do ifexaEdit switches to the line mode – against your will – or if one of theSorry messages
appears? As a solution, you could define the environment variableTERM with the Unix command

export TERM=...

– where you replace the dots by the terminal type you like. If you decide, after you received one of theSorry
messages, to continue work at least in the line mode, you can enter, for example,export TERM=NETWORK.

3.1.2 Workfiles

exaEdit – as well as many other editors – follows the common procedure, which is to load a file from the data medium
into the main memory, to have the file changed there, and eventually to write it back onto the data medium. The copy
of the file in the main memory is called the

workfile

exaEdit can have severalworkfiles at the same time, the number of them is not restricted (except, of course, the case
that the main memory is not large enough).

Everyworkfile has its own name, which consists of eight letters or digits and begins with a letter.

The first (or only)workfile in a exaEdit session is called

MAIN

You may spellworkfile names in capital or small letters, which is not distinguished by the program.exaEdit always
displaysworkfile names in capital letters.

3.1. Functions 35

Theworkfile name is displayed in the status line (i.e. the last line on your window) in columns 5 to 11 and in thetop
line of theworkfile (top line, compare next paragraph).

Theworkfile does not only contain the actual data but also the so-called

top line

You could imagine this as a fictitious0 record which only exists to designate the beginning of yourworkfile. Thetop
line is displayed in the window but it does not exist in the file on the disk since it is only created when the data are
loaded and it is not written when the data is saved to the data medium.

Some commands treat thetop line as a normal data line, which is not changeable, however.

To create and deleteworkfiles, and to switch from oneworkfile to another, you use the command

workfile

There can only be one currentworkfile at one time, which is the only visible one in the window and to which any
given command refers. But it is possible to copy data from oneworkfile to another.

If you prefer to see two or moreworkfiles at the same time, you cannot do this with one singleexaEdit session; you
need two or more windows or screens.

3.1.3 Loading a File

3.1.3.1 Loading in the Normal Case

This section describes the usual routine to get a file into theexaEdit–workfile. The following sections deal with
possible special cases.

There are two different ways to load a file, which means to read from the data medium and bring the file into the
workfile. The first method is to specify a file name when callingexaEdit:

exaedit file

If the file name contains special characters, you have to make special arrangements, for example, put the name in
quotation marks ("). But this does not help in every case. How you actually have to deal with this problem is, for
Unix, determined by your user interface (shell) or has to be looked up for Windows.

If the loading was successful, the file name is assigned to theworkfile, which means that it appears in thetop line and
in the status line. As a result of this, when the commandFILE is given without the specification of a file name, the
workfile will be written in the file with this name.

The second method to load a file is to use the commandLOAD with a file name during a runningexaEdit session:

load file

The file name, either the one which is assigned to theworkfile or the one you specified in theLOAD command, can be
an absolute or a relative file name.

Now we have to differentiate between Unix and Windows systems.

In Unix systems:

The absolute file name begins with a slash, the relative one does not. If you specify a relative file name, it will be
completed to an absolute file name by putting the current directory in front of your relative specification. If you want
to find out the name of your current working directory, you may use theexaEdit command

call pwd or _pwd

which both display the result of the Unix commandpwd (pathname of the working directory). Example: If

/u/fmath/ppreus/exaEdit

36 Chapter 3. The Editor and Its Commands

is your current working directory, the commands

load etc/one or load /etc/one

will read the files

/u/fmath/ppreus/exaEdit/etc/one or /etc/one

You may also want to refer to the parent directory and use the common spelling convention to achieve this. In the
example above you would use the command

load ../abc/two

to read the file

/u/fmath/ppreus/abc/two

and be successful with this although your current working directory is

/u/fmath/ppreus/exaEdit

Additionally, you may also use the spelling with the tilde (~) for file names. In the next example,

~/...

the tilde stands for your HOME directory, in the following example,

~uid/...

~uid stands for the HOME directory ofuid.

In Windows systems:

The absolute file name begins with a backslash (‘\’) or drive letter, the relative one does not. If you specify a relative
file name, it will be completed to an absolute file name by putting the current directory in front of your relative
specification. If you want to find out the name of your current working directory, you may use theexaEdit command

call cd or _cd

which both display the result of the DOS commandcd. Example: If

d:\pe\dok

is your current working directory, the commands

load winnt\win.ini or load \winnt\win.ini

will read the files

d:\pe\dok\winnt\win.ini or d:\winnt\win.ini

You may also refer to the parent directory and use the common spelling convention to achieve this. In the example
above you would use the command

load ..\abc\two

to read the file

d:\pe\abc\two

and be successful with this although your working directory is

d:\pe\dok

From here on it is aboutUnix and Windows systemsboth.

If the file name contains special characters, you have to apply the following rule: Put the entire file name in single
apostrophes (’); replace an apostrophe within your file name by two apostrophes.

3.1. Functions 37

When loading a file with theLOAD command, it is important to know that loading a file is also possible forworkfiles
that are not empty. In this case, the file will be loaded behind the record of the current line. In order to join two files
in this way, you have to load one of the two first (by means ofexaEdit or LOAD), then you have to give the command
BOTTOM and then you can load the other file withLOAD.

If the loading with theLOAD command was successful, the name of the loaded file will be assigned to theworkfile (in
other words, the file name becomes the file name of theworkfile) if there has not been a file name for theworkfile
before. Contrastingly, if there already exists a file name for theworkfile, it will not be changed through the execution
of theLOAD command.

If you decide to transfer the result of your editing into another file, you can do this with theFILE command, compare
section 3.1.4,Saving a File.

Now, a few words about possible errors that could occur in the process of loading a file.

If the file you specified cannot be found, maybe because you made a spelling mistake or the file is in another directory,
you will receive the following message:

File not found

Despite of this, the specified file name will be assigned to theworkfile if there has not been a name for theworkfile so
far and if you have asked for the loading of the file by specifying a file name when you calledexaEdit. This behaviour
allows you to start the creation of a not yet existing file with the definition of its name which you then need not repeat
later with theFILE command.

‘Common’ mistakes you may make when you load a file are the following ones:

Parameter missing

This message occurs if you use theLOAD command without a file name.

Ending ’ missing

This message occurs if you begin the file name in theLOAD command with an opening apostrophe (’) andexaEdit
cannot find the corresponding closing apostrophe, and therefore does not know which file name is actually meant. The
latter is the case when you use the opening apostrophe and your command line contains a space somewhere behind
the opening apostrophe. Vice versa this means: If the file name which you want to enclose in apostrophes does not
contain spaces, you may leave out the closing apostrophe.

Access not allowed

This message occurs when you do not have the rights to access the file, for example, because the file belongs to
somebody else.

A directory cannot be edited

This message occurs if you specified a directory name instead of a file name.exaEdit only manages to edit files (also
see chapter 3.1.3.5,Loading all Files of a Directoryfor further information about this).

No file and no directory

This message occurs when the object you tried to load neither was a file nor a directory. It cannot be edited.

No connection to another computer

This message occurs if in networking computers the searching for a file or the check for access requires the service of
another computer (‘server’) and the operating system cannot get connected to this server.

Part of the name is no directory

This message occurs when you specify a qualified file name (i.e. several subnames that are connected with ‘/’ or ‘ \’
resp.) and not every part except the last one is a directory.

38 Chapter 3. The Editor and Its Commands

Too many symbolic links, refer to itself?

This message occurs if the operating system tries to solve those parts of the file name that point to other names and
the maximal number (which is provided for the operating system) is exceeded. The most frequent reason for this error
is a file name which points to itself (direct or indirect).

access errno = ...
getcwd errno = ...
stat errno = ...

These messages should never occur. They appear if certain errors happen, for whichexaEdit provides no special
message. In such a case, you should record the complete message together with the circumstances of its appearance
and send this information to the author ofexaEdit.

Data set not opened (does not exist?)

This message appears if all the preliminary checksexaEdit performs are positive but the file would not open in spite
of this.

3.1.3.2 Loading a File via DD–Names

As an alternative to specifying a file name with theLOAD command, you can use an environment variable. Before
doing so, you have to connect the environment variable to a file name by specific means.

For example, you could define the environment variableDD_ABC as follows in a Unix system:

export DD_ABC=/u/fmath/ppreus/qwer

Or in a Windows system:

set DD_ABC=h:\dok\qwer

After having done that, you can load the file ‘qwer’ by using the command:

LOAD (abc)

The parentheses serve to distinguish this special case from the standard case of a file name.

TheLOAD command does not distinguish between upper case or lower case letters in the DD–name, but in Unix the
environment variable must be written in upper case letters only. The name of the environment variable must contain
the three charactersDD_. This is a precaution against collisions with other user–defined variables.

The commandFILE does not yet accept DD–names. It is of course possible to save a file that has been loaded via
load (abc) usingfile, becauseexaEdit knows which file it is. But if you try something likefile (abc), exaEdit
will create a file called ‘(abc)’.

3.1.3.3 Files with Special Record Formats

exaEdit usually operates on conventional text files consisting of records that are separated by aLinefeed character
(x0A) or by the two charactersCarriage Return (x0D) andLinefeed. (Such characters are customary but not needed
for reading the file.exaEdit writes them nonetheless.)

There are other ways of formatting records, especially in operating systems aside from Unix or Windows.exaEdit
is able to read one of those: Records of a variable length, which is encoded in a 2–byte–field at the beginning of the
record. The length field itself is not included in the length count.

When reading such files,exaEdit analyses the length field and assigns the read data to records according to the length
specifications. A workfile thus created can only be saved as a conventional text file (see above) at the moment.

The command

3.1. Functions 39

WIDTH

is another alternative to reading data by separating viax0A. For further information see the description of that com-
mand.

3.1.3.4 Parameters for Large Files

Especially when dealing with very large files, it may be beneficial to load only a part of the file instead of all of it.
LOAD can take three parameters for this purpose:

COUNT

counts how many records the file contains, but does not load it at all. At the same time, it is calculated how large
in bytes theworkfile would have to be. This number is larger than the file size on data medium, becauseexaEdit
needs several bytes of control information for eachworkfile. The calculated number is, on the other hand, smaller than
the number of bytes the programexaEdit with the loaded data would need in the computer’s main memory.COUNT
generates this message:

Records counted: ..., size of workfile: ...

The size is measured inB, KB, MB or GB. The message also shows which unit is used.

If you also use the parameterMULTIPLE, the parameterCOUNT must appear prior toMULTIPLE, unless you use
MULTIPLE with the sub–parameter/string/.

If you want to load the firstn records of a file only, you can use the parameter

RECORDS n

For skipping the firstn records of file, you can use the parameter

IGNORE n

Of course you can use these two parameters together, also in conjunction withCOUNT. It is not possible, however, to
useIGNORE andRECORDS together withMULTIPLE.

To get the help text forLOAD that deals withCOUNT, IGNORE andRECORDS, you can use

HELP LOADX

3.1.3.5 Loading All Files of a Directory

exaEdit offers the possibility to load all files of a directory at once into oneworkfile, to make changes there and to
write all files back into the directory.

If you wish to use this multiple loading, it is only possible with theexaEdit commandLOAD, not with the calling of
exaEdit. The parameter needed is

MULTIPLE

Its minimal abbreviation isM.

It is not possible to say anything about the sequence of the individual files when they are loaded, anyway, it is not
necessarily an alphabetical order.

If the directory contains subdirectories, they are ignored.

In order to have the information which records belong to which file in theworkfile also, a certain separator record is
written as the first record of each file. A separator record normally has the form

$$$DDD$$$

40 Chapter 3. The Editor and Its Commands

where the file name replaces the charactersDDD.

You have the option to use separator records of your own choice when you specify the parameter

MULTIPLE /string/

at theLOAD command. The choice of the delimiters of the separator string is free, as usual inexaEdit. If the character
stringDDD occurs in the separator string, it will be replaced by the file name. Working without any separator string is
possible if you specify an empty character string (//).

If LOAD ... MULTIPLE ... is executed in an emptyworkfile, exaEdit stores the information that theworkfile was
generated in this way and notes this with the letterM in the status line. Besides, thetop line and the status line display
the name of the directory instead of a file name. This has an effect on the execution of the commandFILE.

The specification of a directory name may be done in the usual way, for example is. (a dot) the name of the current
directory.

You might receive one of the following error messages (in addition to those atLOAD):

Directory not found

That means that you specifiedMULTIPLE and no object with that name could be found.

Object is no directory

This means that you specifiedMULTIPLE, that the object exists (contrasting to the message above) but it is not a
directory but probably a file.

Directory not opened

That means that the directory cannot be processed despite all the previous successful checks. The precise cause cannot
be specified.

If data sets of the directory were loaded, you receive the message

... file[s] loaded

If the directory also contains subdirectories, you will receive the message:

... subdirectory/-ies skipped

You also have the possibility to load only files with specified names or to exclude files with specified names. The
required parameters are

SELECT ... resp. EXCLUDE ...

Both parameters have to appear prior toMULTIPLE, unlessMULTIPLE is used with the sub–parameter/string/. In
that case, the positioning of the parameters is variable. If one of the two parameters is specified,MULTIPLE is always
assumed, too.

How do you specify the file names? The first way is to specify aworkfile–name. Thisworkfile then has to contain
file names, line by line. The alternative to this is specifying a list of file names, separated by spaces and enclosed in
parentheses. An example:

SELECT LISTE EXCLUDE (ABC XY)

This would load all files of a directory that are mentioned in theworkfile LISTE, without the two filesABC andXY. You
can, of course, use the parametersSELECT andEXCLUDE separately.

It is not necessary to specify full names for the file names. A question mark (?) designates any single character,
an asterisk (*) designates any sequence of characters (including empty sequences), and of any number of characters
enclosed in brackets ([]) one has to appear at the given position. It is also possible to specify a range of characters
within the brackets: Two characters connected with a minus sign (-) mean any character within the lexical range of
the two characters. If you want to use either the minus sign or the closing bracket as a specifying character within the
brackets, they have to appear as first or last character within the brackets. You can exclude (a range of) characters by

3.1. Functions 41

preceding them with an exclamation mark (!), i.e. the file names chosen must not have the specified characters at the
given position.

The help text for the commandLOAD that deals withEXCLUDE andSELECT is available with

HELP LOADX and
HELP LOADY

3.1.4 Saving a File

The saving of a file does not happen automatically; it requires that you give the command

file [filename]

If you do not specify a file name, the contents of yourworkfile (without thetop line) will be written in the file your
workfile is assigned to. You find the name of the respective file in the status line from column 19 onwards or in thetop
line after the wordsTOP LINE. If the file name corresponding to yourworkfile is longer than 41 characters, there will
be only its beginning displayed in the status line. In this case, you may have to look it up in thetop line to be able to
read the full name of the file.

If there is no file name assigned to yourworkfile, you receive this message:

Parameter missing

Contrasting, if you specify a file name in theFILE command, theworkfile will be written in this file. If the file assigned
to yourworkfile has a different name, it will not be changed.

The file name, both the one that is assigned to theworkfile and the one you specified in theFILE command, could be
either an absolute or a relative file name.

Now we have to differentiate between Unix and Windows systems.

In Unix systems:

An absolute file name begins with a slash, a relative one does not. If you specify a relative file name, it will be
completed byexaEdit putting your current working directory in front of it. If you would like to know the name of
your current working directory, you may use the followingexaEdit command:

call pwd or _pwd

This gives you the result of the Unix commandpwd (pathname of the working directory). For example: If

/u/fmath/ppreus/exaEdit

is your current working directory, the following two commands

file etc/one or file /etc/one

write into the following two files:

/u/fmath/ppreus/exaEdit/etc/one or /etc/one

You may also refer to the parent directory by using the common spelling conventions. In the example above, you
would use

file ../abc/two

to write in the file

/u/fmath/ppreus/abc/two

although your working directory is

/u/fmath/ppreus/exaEdit

42 Chapter 3. The Editor and Its Commands

at the moment.

Finally, you could also use the spelling with the tilde (~) for the file name. In the following example

~/...

the tilde stands for your HOME directory and

~uid/...

stands for the HOME directory ofuid.

In Windows systems:

An absolute file name begins with a backslash (‘\’) or a drive letter, a relative one does not. If you specify a relative
file name, it will be completed to an absolute file name byexaEdit putting the name of your current working directory
in front of it. If you would like to know the name of your current working directory, you may use the following
exaEdit command:

call cd or _cd

This gives you the result of the DOS commandcd. For example: If

d:\pe\dok

is your current working directory, the following two commands

file winnt\win.ini or file \winnt\win.ini

will write the following two files:

d:\pe\dok\winnt\win.ini or d:\winnt\win.ini

You may also refer to the parent directory by using the common spelling conventions. In the example above, you
would use

file ..\abc\two

to write in the file

d:\pe\abc\two

although your working directory is

d:\pe\dok

at the moment.

From here on, it is aboutUnix and Windows systemsboth.

If the file name you specified in theFILE command contains spaces, apostrophes or the command separator, you have
to include the file name in apostrophes. In the example

file ’a ;’

the file name consists in ana, one space, and the semicolon (which is your command separator). An apostrophe as
part of the file name has to be spelt as two apostrophes in a row.

Before theworkfile is actually written in the file,exaEdit finds out whether the file already exists or whether it is a
new file. Then you receive one of the two following messages:

Old data set, press J or Y to replace it:
New data set, press J or Y to create it:

These questions are used to reduce the danger of typing errors and file names you did not want to specify.

If you want to continue the saving process as you specified it, you only have to press the key ‘J’ or ‘ Y’ (standing for
‘ja’ or ‘yes’); small letters are sufficient, thereturn key is not necessary. If you press – involuntarily or voluntarily –
another key, you receive this message:

3.1. Functions 43

ATTENTION: Data not saved!

and the alarm message beeps if it exists. But if you allowed the saving process to continue and everything has worked
without problems, you receive the message

Data saved

It is important to note that you will only see the latter message if you respond to the request ‘press J or Y ...’
with either theJ or theY key without pressing thereturn key afterwards.

When you save aworkfile you may receive one of the following error messages:

Data set may be read only

The access rights for the file to write in are such that only read is possible.

File not found

This message appears ifexaEdit cannot find the file in question. Maybe you made a typing error or the file is in
another directory.

File system may be read only

The access setting for the directory to write in says that you only have admission to read.

No Home-directory found for ...

This message appears when you have used~uid (see above) and the operating system cannot find a home directory
for uid.

No file and no directory

This message appears if the object you wanted to save into is neither a file nor a directory. It cannot be edited.

No connection to another computer

In order to find out whether you have access to the file you specified, the operating system has to ask for access at a
computer different from the one you are just working at. But if the other computer or the connection to it do not work
properly, you receive the message cited above. It is highly probable, then, that you cannot read or write any file at the
moment.

Ending ’ missing

This message occurs if a file name in theFILE command begins with an apostrophe (’) but exaEdit cannot find the
corresponding closing apostrophe, and soexaEdit does not know which file name is meant. The latter is the case if
there is a space in the line anywhere after the opening apostrophe which is followed by still other characters. In other
words: If the file name (which you want to enclose in apostrophes) contains no spaces, you may leave out the closing
apostrophe.

Part of the name is no directory

A component of the absolute file name which is not the last one was found not to be a directory but, for example, a
file.

A directory cannot be edited

This message appears if you tried to save in a directory instead in a file.exaEdit can only handle files.

Directory not found

You receive this message if a directory in your file name could not be found.

Too many symbolic links, refer to itself?

This message appears if the operating system cannot solve the file name, which contains links to other files. The cause
is in most cases a circular definition, i.e. a direct or indirect link to itself.

44 Chapter 3. The Editor and Its Commands

Access not allowed

This message appears if you are denied access to a file because it belongs to somebody else, for example.

access errno = ...
getcwd errno = ...
stat errno = ...

and similar messages. These messages should never occur. They appear if certain errors happen, for whichexaEdit
has no special message stored. If you receive one of these messages, you should fix the complete message together
with the circumstances of its appearance and send this information to the author ofexaEdit.

Finally, it may be interesting for you to know that in writing theworkfiles back onto the disk any space at the end of
each record (including the last one) is taken away and anewline character (\n, x0a) is added there.

3.1.5 LeavingexaEdit

You leaveexaEdit either with the commandQUIT or END. The two commands are equivalent.

To save you from leavingexaEdit involuntarily, exaEdit checks whether there are someworkfiles left, which have
been changed but not saved yet, before the program stops the session. If there is only oneworkfile in your exaEdit
session (that will be theMAIN), exaEdit writes the following message in the window:

Changes not saved
Press J or Y to stop:

In line mode, the second line reads as follows

Enter J or Y to stop:

If there is more than oneworkfile in your exaEdit session, the message will read as follows instead:

Workfiles not saved: ...

– where the three dots will be replaced by the names of theworkfiles which have been changed but not saved.

If you think you will do without saving yourworkfile(s), you only have to hit one of the keysJ (for ‘ja’) or Y (for
‘yes’) – andexaEdit immediately finishes the session. Please note that you do not need to press thereturn key; one
of the keysJ or Y is sufficient. Of course, you do not have to use the upper case lettersJ or Y, the single keys are
sufficient.

Contrastingly, if you want to save yourworkfile(s) instead or do not want to quitexaEdit straight away, you only have
to hit any other key instead ofJ or Y. As a result of this, the leaving process is aborted and you find yourself in the
normalexaEdit session, as usual.

You should also note that aworkfile is even regarded as changed if you have done as little change as replacing a
character by itself.

In very rare cases, and probably only in Unix systems,exaEdit may write a message in the window after theexaEdit
session has been finished:

exaEdit: Escape sequences instead of keys:

The facts of the matter are these: The information that one of the special keys, e.g.right arrow, has been pressed,
sometimes reaches a certain stage in the operating system in the form of a sequence of other keys. So, it may occur, for
example, that theright arrow key is translated into the sequence of the three keysEsc[C. If they reach the operating
system with very short intervals, the operating system manages to translate them into the informationright arrow
key. If the time intervals between the individual keys of the sequence are too long – as it may occur in case of
highly charged lines between terminal and computer – the keys are passed on as separate keys, which are useless for
exaEdit in this form. This is the reason whyexaEdit has a mechanism to complete the single characters to the correct

3.1. Functions 45

sequenceright arrow key. All the instances where this mechanism is used are counted and the number of these events
is displayed in the window after the actualexaEdit session has been finished.

If the displayed number is small, you may ignore the message. But if there appear larger numbers after the end of
your session, there might be some problem.exaEdit completes any recognized sequence correctly but there might
have been some cases thatexaEdit did not recognize.

3.1.6 Structure and Input of Commands

Commands are always words or compounds taken from the English language or individual special characters. The
usage of words as commands is intended to enable you to recall the commands more easily. The use of special
characters is reduced to the minimum for the same reason; there are no key combinations where you have to press two
keys at once.

On the other hand, there are abbreviations of the commands to let the amount of things to type in not become too
overwhelming. So you can useC for CHANGE, CO for COPY, DE for DELETE etc. Besides, you may leave out any space
that is not necessary for syntactic reasons.

Between the admitted minimal abbreviation and the full command word any transgressive grades are allowed, so that
you may start working with the complete commands as a beginner and then work through to the minimal abbreviations
a professional may use. Example:change chang chan cha ch c – all these spellings are allowed for theCHANGE
command.

Commands may have operands (parameters), which are normally separated from the command word and from each
other by spaces. As mentioned above, you can leave out the separating spaces if the resulting creation is not ambigu-
ous.

For example, the commandCOPY copies the specified lines (starting with the first specified one to the second specified
one, includingly) behind the current line. TheCOPY command will be discussed in detail at another place in the text,
the example here is only supposed to demonstrate the varying possibilities for spelling.

copy 100 200

The minimal abbreviation ofCOPY is CO, the space before the specification100 is not necessary and therefore the
shortest spelling is:

co100 200

As a third operand the name of aworkfile can be specified, from which the lines will be copied. For such a name (e.g.
abc) has to begin with a letter, it is possible to write it directly behind the operand200 without a space:

co100 200abc

If the area you want to copy includes the first or the last line of theworkfile, you do not have to specify the numbers
of those lines. In this case, it will be enough to denote them with their symbolic valuesf (for first line) andl (for last
line), respectively. So, in this example, you have to write at least:

co f l abc

here, all spaces are necessary.

It is also possible to enter several commands at once as you will see in the next section.

3.1.7 Concatenating Commands, Command Separator

When editing, you will often have to give a sequence of commands which you know in advance. For example:

• Search for the next record containing the character string‘abc’,

• starting there, go two records back,

46 Chapter 3. The Editor and Its Commands

• in that record, change‘xyz’ to ‘12’.

The commands that are necessary to do this look like that:

locate /abc/
up 2
change /xyz/12/

These commands can be concatenated by writing them in one line, separated with the command separator ‘;’, and
entering them at once withEnter:

l/abc/;-2;c/xyz/12

(Of course, you may also write the full command words – in the same manner as they are listed above.)

One of the advantages of concatenation is that some of the actionsexaEdit has to execute only have to be made once
instead of three times, which results in saving time. Another application of command concatenation can be found in
section 3.1.22,Command Storage.

The command separator is predefined as the character ‘;’. But this is not the only character possible for this purpose;
you may use any other character except the question mark and digits. The command to change or display the character
which functions as command separator isCMDSEP. Please note, that the command to change the command separator
has to be the last command in an input line. Compare section 3.2,The Commands, for more information.

On some keyboards, the character ‘;’ can be only reached with theShift key. For such a frequently used character,
which should serve the efficiency of your working, this may be a bad position. In this case, it would probably be
better to use another character, which is reachable directly. Often the comma ‘,’ will provide a solution. To avoid the
trouble of entering the command

cmdsep ,

every time you start aexaEdit session, you can solve the problem once and for all by putting the command mentioned
above in theexaEdit profile file. Compare also section 3.1.26,The Profile Files.

Please note that you do not have to change the command separator if the character ‘;’ is part of a character string
in a command. For example,l/ab searches for the character string ‘ab’. If you want to concatenate theLOCATE
command with another command, you only need to writel/ab/;change ... The commandl/ab; would search
for the character string ‘ab;’. To concatenate this command with another one, you could write the following version:
l/ab;/;change ... Delimitating character strings has priority over recognition of the command separator.

3.1.8 Presentation in the Window, Current Line

The editorexaEdit works on the records in a file and treats them as lines at the same time (this is an example of a file
with three records):

*** 1st record of the file ***
2nd record
This is the last record

exaEdit uses the whole window at disposal for its work. If you change the window size while you work withexaEdit
(which unfortunately is not possible in all operating systems),exaEdit recognizes this change and adjusts to the new
size automatically. If the window is too small or if the operating system cannot use the window mode (i.e. writing in
the whole window),exaEdit will work in the line mode. You can explicitly ask for the line mode (exaEdit command
scope off), compare section 3.1.20.

exaEdit displays the content or (in most cases) parts of the content of theworkfile in the upper part of the window,
the so-called data zone. The lower part of the window mainly serves the input of commands (details discussed later)
and the output of answers of the editor; it is called dialogue zone. So, a window showing theworkfile presented above
would look as follows (prerequisite a window with 24 lines).

3.1. Functions 47

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

+--+
1| |
2| |
3| |
4| |
5| |
6| |
7|MAIN exaEdit 02B TOP LINE file |
8|000100 *** 1st record of the file *** |
9|000200 2nd record |

10|000300 This is the last record |
11| |
12| |
13| |
14| |
15| |
16|;....1....;....2....;....3....;....4....;....5....;....6....;....7...|
17| |
18|exaEdit |
19|_ |
20| |
21| |
22| |
23| |
24| MAIN file 3 19/ 1 |

+--+

The numbering above (1 – 80) and on the left (1 – 24) and the frame are not visible in the window, they are only
used as points of reference in this manual. The data zone, where the records of theworkfile (or parts of them) are
displayed, contains the lines 1 to 15. In line 16, there is a ruler, which is supposed to make it easier for you to count
the columns. Lines 17 to 23 contain the dialogue zone. Line 24 is the status line, in which the so-calledworkfile name
(MAIN) is displayed, the name of the file currently worked on (file), on the very right border the number of records
of theworkfile (3), and the line and column number of the current cursor position (19/ 1).

The following considerations require that each record in theworkfile takes only one line in the data zone if the record
is visible there. It does not have to be like that necessarily, as you will see later, but this requirement is useful here
since it allows us to use the terms line and record interchangeably.

Line 7 contains (as record number zero, so to speak) an additional record of theworkfile with theworkfile name (MAIN),
the name of the editorexaEdit, the version number ofexaEdit (02B), the identificationTOP LINE and the name of
the file currently worked on (file). Thetop line is generated when a file is loaded into aworkfile and it is eliminated
when theworkfile is written into a file.

If a file has more records than the number of records that would fit into the window (which is normal),exaEdit only
displays a certain section in the window.

48 Chapter 3. The Editor and Its Commands

File



'

&

$

%

'

&

$

%
Section displayed
by exaEdit



	

This section moves over the file according to theexaEdit commands used. Please try to keep this image in mind: The
section moves over the file as a reading magnifier moves over a piece of paper. In contrast to this, the perception that
the section remains fixed like a window and the file is pulled behind it is definitely wrong. TheexaEdit command+5,
for example, pushes the section five records onwards; this means five records downward in the direction of the end of
the file.

The section contains an odd number of lines. This implies that there is a middle line, which is emphasized optically
and logically. This line is called ‘current line’ (to be more precise: the line of the current record). Any command
which contains no line specification refers to the current line. For example, you use the commanddelete 3 (‘delete
3 lines’) to delete the record of the current line and the two following records in theworkfile.

It is true that the current line is fixed in the window but it is not on a fixed place in theworkfile. Every time when
theworkfile is changed, the current line is moved to the line that was changed last – after the changes are done. The
section of theworkfile displayed is always positioned in such a way that the place which has probably just been in the
centre of your interest is in the middle of the window. In the explanations of each individual command notes are made
whether and in which manner the current line is moved. With some exercise you will know where the current line is
positioned after the execution of the most of the commands. Above that, you will be able to use this information to
your advantage when you are concatenating commands (compare section 3.1.7).

Each record of theworkfile has a record number. This number is determined when the file is loaded into theworkfile.
The numbers are consecutively counted up, the standard counting is100, 200, 300, ...

The lines in the data zone, that contain the records from theworkfile, are structured as a standard as follows:

11111 77778
column 12345678901234...67890
content nnnnnnfddddddd...ddddd

• Column 1 – 6 (nnnnnn) is the number area.

• Column 7 (f) is the flag field, in which there are marks of certain qualities of the line (details later; in
any normal case the field is empty).

• Column 8 – 80 (dd...dd) is the data zone.

The width of the number area (default: 6) may be changed (0 to 8 characters); the data zone adjusts its width automat-
ically.

With the values mentioned, there can be records up to 73 characters displayed in the data zone. But often there will
be longer records than those fitting in 73 columns. As long as you do not give any other specification, the rests of the
records will be displayed in subsequent lines. You recognize these subsequent lines from the empty number area:

3.1. Functions 49

000100 -------TEN----TWENTY----THIRTY-----FORTY...---SEVENTY---
-EIGHTY----NINETY---HUNDRED

000200 One record that fits in one line.

In this example, there are two records: The record with the number 200, the content of which fits in one line in the
window, and the record with the number 100, which has 100 characters and takes two lines in the window.

Since this kind of presentation is not always liked, there is the possibility to define a logical window width (command
LWWIDTH). If the window width is defined as 110, the example from above will transmute to the following picture:

000100 -------TEN----TWENTY----THIRTY-----FORTY...---SEVENTY---
000200 One record that fits in one line.

With this method (but not yet in the current version ofexaEdit) you have the possibility to move the visible part of
the window (commandszone). If you defineszone as 30, you see the following in the window:

000100 -----FORTY...---SEVENTY----EIGHTY----NINETY---HUNDRED
000200 ne.

– this means anything from the thirtieth character on.

What happens ifLWWIDTH is defined as 90 (andszone is set back to its normal value 1)?

000100 -------TEN----TWENTY----THIRTY-----FORTY...---SEVENTY---
---HUNDRED

000200 One record that fits in one line.

This illustrates that the part which exceeds the value defined inLWWIDTH is always displayed in subsequent lines. If
you do not want any subsequent lines at all, the value ofLWWIDTH has to be≥ the longest record.

One more schematic presentation of these facts:

1st case: logical windowwidth (lwwidth) = width of the data area,
left margin = 1st character (szone 1):

︷ ︸︸ ︷size of the longest record

︸ ︷︷ ︸
lwwidth
= width of the data zone

data zone,
visible part of
theworkfile

� Characters in this
area produce
subsequent lines.

50 Chapter 3. The Editor and Its Commands

2nd case: logical windowwidth (lwwidth) > width of the data area,
left margin = 1st character (szone 1):

︷ ︸︸ ︷size of the longest record

︸ ︷︷ ︸
data area︸ ︷︷ ︸

lwwidth

�

�

Characters in this
area produce
subsequent lines.

Characters in this
area are not
visible.

data zone,
visible part of

theworkfile

3.1. Functions 51

3rd case: logical windowwidth (lwwidth) > width of the data area,
left margin = nth character (szone n defined withn > 1):
(note: This case is not possible in the current version ofexaEdit.)

︷ ︸︸ ︷size of the longest record

︸ ︷︷ ︸︸ ︷︷ ︸
data area

︸ ︷︷ ︸
lwwidth

szone – value

�

��

Data zone,
visible part of
theworkfile

Characters in this
area produce
subsequent lines.

Characters in these
areas are not
visible.

The same rule is valid for the subsequent lines, this means that the specification ofszone may change the part of these
lines which is displayed, and it means that characters beyond the columnLWWIDTH produce subsequent lines, again.

3.1.9 Record Numbers

All records of aworkfile have a number. This number is generated when the file is loaded, but omitted when saving
the file. Several commands need the numbers to define a target or working area.

The record numbers run from 0 to 99999999. Normally the first record will have the number 100 and the interval
between two record will be 100, too. When editing, lines might be added, deleted or moved. The record numbers will
remain strictly ascending. Since the interval between record numbers is set to 100 in the beginning, changes can often
be handled within those intervals. Whenever possible,exaEdit avoids changing existing record numbers. Only when
inevitable,exaEdit partially renumbers the records. The interval between two numbers then is 20 (instead of 100).
Using small steps like this, it’s highly probable that an existing record number that can be kept is reached soon. All
following record numbers remain untouched.exaEdit reports a renumbering with the message:

Renumbered

If you want to renumber the records yourself, you can use the command:

REKEY

For modifying the starting number or the size of the intervals see the description of the command.

Usually, only 6 of the actual 8 digits of the record numbers are displayed (000100, 000200 etc.). If a file consisting
of more than 10000 or more than 100000 lines is loaded, 7 or 8 digits will be displayed.

You can control this display width by using the command

SKEY

and its parameters (see command description).

52 Chapter 3. The Editor and Its Commands

When the display width is not sufficient for showing all significant numbers, the required number of leading digits
will be omitted on the display. The* character shows this has happened, e.g. the record number 1234500 could show
as:

234500*data

In most cases you should be able to avoid this situation by choosing suitable values for the display width of the
record numbers. This is recommended, because otherwise there might occur misunderstandings between you and
exaEdit, for example with the line number 234500. If neccessary you must reduce the number intervals by means of
REKEY

3.1.10 Deleting and Inserting of Characters

Generally you may delete any character in theexaEdit window, excepted are the top line, the status line, and the
number areas in the data zone. Deleting can be usually done by one of two keys.

TheDel key deletes the character under the cursor. All characters to the right of this place are moved 1 place to the
left (sometimes the contents of the next lines also, if they belong to a multi-line displayed record which is not our
concern here).

TheBackspace key, often marked with an arrow to the left, deletes the character before the cursor. As with the other
key, all characters to right of this place are moved 1 place to the left.

Inserting characters is a little bit more complicated, because it has to be separated from overwriting of an existing
character. It is true that nowadays there are many programs which offer no possibility for overwriting a character but
only deleting and inserting, but not soexaEdit.

The restrictions for inserting are the same as for deleting a character.

In order to insert a character in the editor windowexaEdit has to be put into the insert mode (please distinguish that
from the input mode). This is accomplished in general by pressing the insert key. When the insert mode holds it is
shown in the status line by the character∧. As long as the insert mode is valid all characters put in will not serve
overwriting at the place of the cursor but inserting at this place. All characters to the right are moved 1 place to the
right.

In the default behaviour of the editor the insert mode is ended by pressing the return key (or any function key). If you
want to end it before, perhaps because the next characters you want to type are meant to overwrite, you must press
the insert key again. Prerequisite is that at least 1 character key has been pressed after switching on the insert mode.
We call the insert mode described here the ordinary insert mode (in contrast to the insert mode described in the next
paragraph).

Now comes the permanent insert mode: If you do not want the insert mode by every return key you may do the
following: press the insert key twice (without any other key in-between). If you press during that permanent insert
mode the insert key again it will be switched off.

In addition to pressing the insert key there is also the command

INSMODE

INSMODE ON switches to the permanent insert mode (just like the double pressing of the insert key),INSMODE OFF
switches off the insert mode (just like the single pressing of the insert key). Thus you have the opportunity to insert
characters with a keyboard where the insert key is missing. The commandINSMODE and the insert key are of course
usable mutually.

3.1.11 Setting Of and Going To Markers

It will occur quite often that you want to keep in mind a certain position in the file you are editing in order to be able
to go back there later. To achieve this, you may use the line number but this method is awkward and it might go wrong
if there was a renumbering in the meantime.

3.1. Functions 53

A more elegant method is to set markers by using the command

set

The processing of this command consists inexaEdit memorizing the record of the current line.

With the command

return

you can go back to the marked record from everywhere in your file.

If you give the commandSET another time, the previous marker is overridden and, again, the current line is marked.

With the command

set ?

you can inform yourself which record a followingRETURN command would go back to.

If you give the commandRETURN without having set a marker in the sameworkfile with theSET command, you receive
the message

SET storage unused

If you have deleted the record with theSET marker in the meantime, the commandsSET ? andRETURN provide the
previous record. To call your attention to this, you receive in both cases the following message:

SET storage changed, return to previous record

This message will only then stop to occur when you define a newSET marker.

There is an extraSET memory for every singleworkfile. Thus, it is not possible to return to anotherworkfile with
RETURN.

The line marked bySET has the symbolic line numbers, which you may use effectively in all commands needing a
line number.

3.1.12 Positioning

Positioning means the moving of the current line (compare section 3.1.8,Presentation in the Window, Current Line).
You may position the current line directly or indirectly.

You use indirect positioning when you either change data directly in the data zone or give a command that changes
the position of the current line as a side effect.

If you change data directly, the changed line farthest down becomes the current line after you have pressed thereturn
key.

In commands that change data, the last line changed becomes the current line. When you delete lines, the previous
line becomes the current line. When you insert lines, the last inserted line becomes the current one. The individual
explanations of the commands in section 3.2.3 take account of the behaviour of the current line, i.e. whether it is
moved and if yes, what the rules are.

There is a number of commands for direct positioning of the current line. Forward, i.e. towards the end of the file,
you apply one of these commands:

next
down
+

54 Chapter 3. The Editor and Its Commands

– all of them are identical with regard to parameters and execution. The number of records by which you want to
move the current line is either 1 (if you do not specify a parameter) or the numbern you specified in the command. If
you go too far, for example, when you give the commandNEXT 5 while the current line is 3 lines in front of the last
line, you receive the error message

End of data

and the current line stays where it is.

If you want to position the current line on the last data line, you use the command

bottom

Backward, i.e. towards the beginning of the file, you position the current line with one of these commands:

back
up
-

– these three are all identical with regard to parameter and execution, as well. They work equivalently to the commands
for the forward movements; the only difference is that the error message reads

Begin of data

if you try to go beyond the file.

With the command

top

you position the current line on thetop line. If you want to move the current line on the first data line, you may enter

top; next

You can use the commandPOINT to set the current line to the record given with the command, e.g.

point 400

So you can reach the first data line very quickly with

po f

With the commandsLOCATE andRLOCATE you have the option to go to specific data, and you can also position the
current line directly. Compare section 3.1.14,Searching, for more detail.

With the commandRETURN you can position the current line on a record you have marked before. You find more
details on this subject in section 3.1.11,Setting and Going To Markers.

A special kind of positioning is leafing through a file, which will be discussed in the following section.

3.1.13 Leafing Through the File

Related to positioning of a file, which has been described in the section above, is leafing through a file. Basically, it is
also a kind of positioning but it partially responds to other rules.

You may jump a whole page or the half of a page forward or backward. There are noexaEdit commands for these
steps butexaEdit functions, instead.

‘+page’
‘+half’
‘-page’
‘-half’

3.1. Functions 55

These (and others, compare section 3.1.30)exaEdit functions are linked to defined keys on your keyboard when
exaEdit starts or they may be linked to theF keys with the help of the commandPFK.

WhenexaEdit starts, the default setting is as follows:

function keys
‘+page’ F8, PgUp ↓
‘-page’ F7, PgDn ↑
‘+half’ F11
‘-half’ F10

Each of the functions mentioned can be linked to anyF key with the commandPFK (compare section 3.1.23,Pro-
grammable Function Keys).

When theseexaEdit functions are displayed in the window or when they are being processed, the processes are
converted to the correspondingexaEdit commands+ and-, respectively.

Since the leafing through a file is done in such a way that the last line of the previous window becomes the first line of
the whole or half window (when you go forward), the conversion results are as follows – prerequisite a window with
24 lines and, thus, 15 lines in the data zone:

function result
‘+page’ +14
‘-page’ -14
‘+half’ +7
‘-half’ -7

This means, for example, that pressing the keyF10, which is linked to‘+half’, has the same effect as giving the
command+7.

However, there are some deviations from the equivalent treatment of theexaEdit functions and the positioning com-
mands inexaEdit. The 1st deviation consists in the fact that when you go beyond thetop line or the last data line, the
current line is positioned on thetop line or on the last line if theexaEdit function is used. In contrast to this,exaEdit
denies the execution of the normal positioning commands and gives the messagesBegin of data or End of data
when you try to go beyond the data, i.e. the position of the current line is not changed.

The 2nd deviation from the common pattern has only been planned, so far. It includes that too long records which are
put in subsequent lines will be considered in future versions ofexaEdit, meaning the data will be displayed without
omissions. In contrast, if the current line has to be moved with+14 by 14 records, it will be moved by 14 records even
if there are some data not shown between the data displayed.

The 3rd deviation from the pattern of positioning is that theexaEdit command+14 is independent of the window size
while theexaEdit function‘+page’ only results in ‘+14’ if a window with 24 or 25 lines is used. This also means
that the function‘+page’ has different values corresponding to different values of the window size.

3.1.14 Searching

‘Searching’ means looking for and going to records that contain certain character strings or do not contain certain
character strings. Commonly, you use the command

locate /character string/

to search for a certain character string. The command is explained in detail in section 3.2.

From bottom to top you may search with the commandRLOCATE (‘ reverse locate’).

With the commandsNLOCATE (‘negative locate’) and RNLOCATE (‘ reverse negative locate’) or NRLOCATE (‘negative
reverse locate’) you receive the nearest line that does not contain the specified character string.

As the minimal abbreviation forLOCATE is onlyL and asexaEdit memorizes the character string that was searched for
last, the repetitive search for the same character string is quite simple: you only have to give the commandL. Please

56 Chapter 3. The Editor and Its Commands

keep in mind, that you may define one of theF keys with theLOCATE command, which allows you to find different
character strings with once pressing a key (compare section 3.1.30).

The stored character string that has been searched for remains the same for any form of theLOCATE command. So, you
only need to give the commandRLOCATE to search backwardly for the same character string that you were searching
for forwardly in advance.

3.1.15 Changing Data, Survey

There are three different methods to change data

1. direct changes

2. commands

3. prefix commands

3.1.15.1 Direct Changes

This means that the characters in the data area may be changed, deleted or inserted. All the changes only take effect
when thereturn key has been pressed, in other words, only then will the data be changed. It is not possible to insert
new lines or to delete lines with direct changes. You need commands or prefix commands to achieve this.

3.1.15.2 Commands

Commands are typed in a command line (commonly beneath the ruler line) and serve

• to change theworkfile,
examples:DELETE, CHANGE,

• to change the display,
examples:LWWIDTH, SKEY,

• to position the current line,
examples:NEXT, TOP, LOCATE,

• and many other things.

Commands may be entered in any line, except the status line (i.e. the lowest line), but in most of the cases it is most
sensible to type the commands in the line beneath the ruler. This is the place on which the cursor is placed after the
return key is pressed.

Section 3.2 provides details on the commands.

3.1.15.3 Prefix Commands

These are special commands which are typed in the number (=prefix) area of a line and which only effect this line.
Examples are

d[n] to deleten lines
dd to delete a range of lines
i to insert an empty line
" to double a line

Section 3.3 provides details.

3.1. Functions 57

3.1.15.4 Sequence of Processing

Any changes, direct ones and those done with commands or prefix commands, only have an effect when thereturn
key is hit.

You may do as many changes as you like with any kind of the three classes mentioned above. The sequence of
processing is like this: The window is checked from top to bottom for lines that have been changed. A line even is
regarded as changed if there only was some character replaced by itself. The kind of change is concluded from the
position of the line in the window, from its previous and its current content.

A line that was changed and in which there was no part of theworkfiles (i.e. beyond the data zone or within the data
zone above the first line used or beneath the last line used), is always interpreted as a command.

For any other changed line the following rule is valid: If the number area has the same content as it had before, a direct
change was made. If an accepted prefix command is identified in the changed number area, the change is recognized
as a prefix command. In advance to this, the data area, which may have been changed, is treated as a direct change.
Contrastingly, if there is no valid prefix command in the number area, the whole line is treated as a command.

If the explanations above are too abstract for you, you should carefully work through the examples in the chapterFirst
Steps.

3.1.16 Deleting Lines

There are several possibilities to delete lines.

The commandDELETE, with the minimal abbreviationDE, deletes the current line and possibly the following ones if
you specify it (compare section 3.2.3).

The commandDELETEL, with the minimal abbreviationDL deletes the lines you specified by indicating their line
numbers. Of course, you may also use symbolic line numbers. For example

dl p n

deletes the current line and the lines immediately above and immediately below the current line.

You may also delete lines with prefix commands. At the moment, the commandsd anddn are valid.

Any line, in which you type ‘d’ in the number area, will be deleted when you press thereturn key.

The typedn deletesn lines, starting at the line with this marker. You have to mind some particularities when you use
the spelling withdn. These special rules are explained in the section 3.1.15.3.

The prefix commanddd must occur in two lines. If you then press the return key all records in the marked area will
be deleted.

3.1.17 Inserting Lines

There are several possibilities to insert lines. First, those methods are explained that insert lines immediately after the
current line. In these cases, you have to position theworkfile appropriately in advance.

With the commandINPUT you putexaEdit in the input mode. You can see this from the character ‘I’ in the status
line and from the ruler (between the data zone and the dialogue zone), which begins in column 1. Any line you enter
from now on is inserted above, in the data zone. First, the new lines do not get a line number. They only obtain a
number when you leave the input mode. You leave the input mode by pressing thereturn key without having typed
something before.

As exaEdit recognizes the input of characters at any place of the window, you can reduce the effort of typing things
in if you wish to insert similar lines in a row. For example, imagine you would like to insert the two lines

58 Chapter 3. The Editor and Its Commands

23-950320 New command CASE.
22-950320 New command PFK.

When you have typed in the first of the two lines and transferred it into the data zone withreturn, you find the
following situation in a window with 24 lines:

• The first line you inserted is repeated in line 17 in the window.

• The cursor is at the beginning of line 18, ready for your input.

Instead of typing the second line completely in line 18, you move the cursor to line 17 and change it, so that it looks
like the second line. This takes much less effort than typing in the whole second line. Then you enter the input with
thereturn key, as usual.

Some other commands you may use to insert lines after the current line areCOPY, LOAD andMOVE. They are explained
in detail in section 3.2.3.

If you do not like to insert lines after the current line, you may apply the number command and insert lines immediately
anywhere in the window, instead. From a formal point of view, the number command looks like a line from the data
zone:

number data

It is interesting to note that the space between the two parts is not necessary. If you have aworkfile with the line
numbers100, 200, 300, . . . and you give the command

120 qwert

– you insert the line ‘000120 qwert’ by doing so. You would achieve the same result with ‘120qwert’, while
‘120 qwert’ results in the line ‘000120 qwert’.

The number command is most effective if you do not have to type it completely but have the occasion to use something
that already is there in your file. Imagine, you have theworkfile

000100 New command CASE.
000200 anything

and you would like the text ‘New command PFK.’ to be the second line between the two other lines. The most simple
way to do this is to move the cursor in the data zone to the line100, change the number there to000150, change the
word CASE in the text toPFK, and enter everything with thereturn key. No need to worry, the overwritten line100
reappears and after it the intended line150. With this method you use twoexaEdit qualities at once: first, the number
command and second, the fact that you are allowed to give input at any place in the window (including the data zone).

Of course, you have to be careful that you choose the right number. If you use a number that already exists, the line
will be overwritten. May be that is your intention but that subject does not belong any more to the sectionInserting
Lines.

If you would like to apply the number command but the intervals of the numbers are too small, you can restore the
100 intervals with the commandREKEY.

3.1.18 Features of the Input Mode

As you have seen in section 3.1.17,Inserting Lines, you can switchexaEdit to the input mode and thereby insert new
lines after the current line of the workfile. In the input mode which you start with the commandINPUT the editor has
additional features which are beneficial especially for the input of text or programs.

3.1.18.1 Automatic Indenting

After the input of a line the cursor is positioned again for the next one. The default setting of the editor is not always
the first column but that column, which has been the first non-empty column in the line before. The "line before" is

3.1. Functions 59

the current line when starting the input mode and it is afterwards the line put in just before during the input mode.
The indent column is also kept when empty lines are put in. The automatic indenting is especially beneficial when
entering programs.

You may control the indenting with the command

INDENT

It specifies if automatic indenting should occur or not. Furthermore you can specify if the indent column should
depend on the previous line as described or if it should have a fixed value. More details on the syntax you can find in
the corresponding part of the section 3.2,The Commands.

3.1.18.2 Automatic Line Break

If the input of text comprises several lines it is useful when the editor completes a filled line and starts a new one all
by itself. Thus you may concentrate yourself fully to the text to be entered. Starting with version 02 ofexaEdit this is
the default behaviour of the editor. Default are lines with the maximum lengthLWWIDTH. LWWIDTH is the visible data
width in the data zone, for example 73 with an editor window of 80 columns and a number area of 6 digits.

As soon as 73 characters are enteredexaEdit searches from left to right for the first group of blanks and adds all
characters before that group to the first input line which is entered at once. All characters after that group are put at
the start of the next input line which will be continued with the characters entered thereafter.

You may control the indenting with the command

INLENGTH

It specifies if automatic line break should occur or not. Furthermore you can specify if the line break column should
be at the end of the visible line as described or if it should have a fixed value. More details on the syntax you can find
in the corresponding part of the section 3.2,The Commands.

3.1.19 Editing Blocks

exaEdit knows of three commands (CCOPY, CMOVE, CDELETE) which can copy, move, or delete columns (CCOPY =
column copy).

Since these commands can be used on the same columns in several consecutive lines, it is possible to copy, move or
delete ‘rectangles’ of characters in aworkfile with a single command. If, for example, you have theworkfile:

000100 Here is
000200 a block
000300 of text
000400 =======

you can use the command

ccopy (f l) 1 7 column 9 line 400

to make it look like this:

000100 Here is
000200 a block
000300 of text
000400 ======= Here is
000500 a block
000600 of text
000700 =======

The meaning of the command is: From the first to the last line of theworkfile, copy the columns 1 to 7 to the columns
9 and following of the lines 400 and following.

60 Chapter 3. The Editor and Its Commands

You can find details on the three commands at their descriptions in section 3.2.3.

3.1.20 The Line Mode

Regarding the use of the window,exaEdit offers two manners: the window mode and the line mode. The normal state
is the window mode, in whichexaEdit recognizes the input from the whole window and writes into the whole window
for the output.

In contrast to this, in the line mode the window is used like a typewriter terminal where you andexaEdit can only add
new lines at the end of the text you have written so far.

exaEdit uses the line mode only if the window mode is not possible or if you asked for the line mode with the
command

scope off

You can go back to the window mode with the command

scope on

– whilescope alone has the same effect as the latter.

The line mode may be of advantage if you want to display something that does not fit into the 7 or 8 lines of the dia-
logue zone, e.g. the complete output of the commandHELP. In such cases you can use the commandsscope off; help
and return to the more usual window mode withscope on later.

Another usage is to end and restart the window mode withscope off; scope on. This helps when the operat-
ing system got confused with the display properties (which unfortunately does happen from time to time on some
systems).

A useful command for the line mode is the command

display ...

with which you askexaEdit to display the number of lines you specified, beginning with the current line.

3.1.21 Programming the Editor

Programming the editor includes all the possibilities allowing to have complicated commands or sequences of com-
mands executed with a few hits of keys.exaEdit has a lot of features that make this programming possible. Other
functions will be added in the course of time. ButexaEdit will not reach the flexibility of a real programming lan-
guage; that would not be reasonable because there are enough other, very useful programs for that purpose. What
doesexaEdit offer for this field?

• The programmable function keysF1, F2, . . . , compare section 3.1.23.

• The command storagesX andY, compare section 3.1.22.

• The command sequence workfileEXEC, compare section 3.1.24.

• The parameter variables, compare section 3.1.25.

3.1.22 Command Storage

exaEdit can store commands or commands that are concatenated with the command separator (compare section 3.1.7)
to allow you to fetch them conveniently whenever you need them.

3.1. Functions 61

exaEdit knows two kinds of command storage. First, there are theF keys explained in section 3.1.23, and, second,
the twoexaEdit commandsX andY which are explained below. The essential difference between theF keys and the
commands is that you may use the command sequence saved asX orY within another command sequence as command
X andY, again, while theF keys can only be used separately.

You set the command storageX with the command

X command sequence

For example:

x next 2; change /ab/xy/

For the execution of this command it is sufficient to give the commandX. You will often wish to execute a command
repeatedly. To do this, you only have to specify the number of repetitions behind the command.

x 17

executes the command sequence 17 times.

If a command cannot be executed, for example because the end of theworkfile is reached, then the execution ofX is
aborted. This would allow you to use, for example, the predefinedX from above withX 9999 even if theworkfile does
not contain as many records as would be necessary at first sight.

With the command

x ?

you achieve thatexaEdit displays the command sequence stored inX in the window. This is very useful if you have
defined a highly complex command sequence and you want to change it only slightly. In this case you enterX ?,
change the line in the window and hit thereturn key. By doing so, you have redefined (and changed)X.

The commandY is identical withX. In the definition ofX you may useY and vice versa. A directly or indirectly
recursive definition is recognized byexaEdit in the execution of the commands and results in one of the following
two messages:

Cancelled at recursive X
Cancelled at recursive Y

You can find further details in section 3.2.3 at the description ofX or Y.

3.1.23 Programmable Function Keys

exaEdit allows to reserve theF keys (labelled withF1, F2, . . .) for commands or functions.

Usually, keyboards have theF keysF1 to F12. Regardless of how many such keys there are, pressing any of them
has to be registered as an action and sent to the programexaEdit to make them available forexaEdit. Unfortunately,
this is not always the case. You can test whether theF keys are available. The keysF7, F8, F10, andF11 have to
result in one of theexaEdit commands to browse half of or a full page (e.g.-7 for F7 in a window with 24 lines). The
remainingF keys result in the message:

F-key is not defined

If you do not see any of these responses after pressing anF key, that key is not available forexaEdit.

First, a simple example: You want to change in aworkfile in every tenth line the digit 3 to a 7. For this purpose you
could give the command line

next 10; change /3/7/

as often as you need it. A facilitation for this are the command storagesX andY (compare the previous section or
section 3.2.3,The Commands in Detail). But it is even more easy to reserve one of theF keys for the command
sequence, for example the keyF1. To do this, you have to type the line

62 Chapter 3. The Editor and Its Commands

n10;c/3/7

and press theF1 key afterwards, instead of thereturn key. As a result of your success, you receive the message

F-key now defined

Every time you press the keyF1, the stored command line is executed.

The contents ofF keys are not particularly protected. This means that aF key receives a new content if you enter
something and press theF key again.

The contents of theF keys are the same for anyworkfile of your exaEdit session. When you leaveexaEdit, they are
lost.

Besides the easy usage of theF keys described above, there are more possibilities, for which you need the command
PFK (‘program function key’). PFK is explained in detail in section 3.2.3,The Commands in Detail; here there is only
the most essential information.

With

pfk n ?

you see the content of theF keyn. If you omit the numbern, you see the content of anyF key with some content. The
question mark is also dispensable.

With

pfk n lock

you protect the content of theF key n. This means that it will not be definable by entering commands and pressing
this key. This protects theF key from involuntary setting. You can set it back to the unprotected state with

pfk n unlock

You can also set theF keyn with the commandPFK.

pfk n set /.../

Between the dashes, which may be replaced by any other separator, as usual, there is the content of the key. When
you usePFK SET, the key is put into the protected mode automatically.

The defining ofF keys withPFK SET is the only possibility to combineexaEdit functions (compare section 3.1.30)
with F keys. For example, if theEntf or Del key is missing on your keyboard or it is not handed over toexaEdit or
it has another function, then you can define its original function, namely to delete the character behind the cursor, by
using

pfk 1 set /′del′/

to the keyF1.

3.1.24 Command Sequences in theWorkfile: EXEC

As you may already know, you can storeexaEdit commands in theexaEdit profile files and then the commands are
executed whenexaEdit or a newworkfile is started (compare section 3.1.26). But this execution happens only once
and only before the file is loaded. If you want to have prepared sequences ofexaEdit commands executed, you may
use the command storagesX andY and the programmable function keysF1, F2, . . . , but the amount of executable
commands is very limited. An expansion of this possibility works as follows:

1. Create aworkfile with the nameEXEC.

2. Fill this workfile with the commands you want to have executed.

3. Go back to the otherworkfile where you actually want to edit a text.

3.1. Functions 63

4. Call the commandEXEC.

Then, all characters of theworkfile EXEC are executed in a row in the currentworkfile.

You should note the following particularities:

• After the commandEXEC, nothing else may appear in aexaEdit command line (this restriction will be
abandoned in futureexaEdit versions).

• If there is noworkfile EXEC, you receive the error message

Workfile not found

• If the workfile EXEC contains the commandFILE, the usual questions of the kind

Old data set, press J or Y to replace it:

etc. do not appear. You should be very careful in this case and precisely check the file names you use.

You can find further details at the description of the commandEXEC in section 3.2.3,The Commands in Detail.

3.1.25 Parameter Variables

Parameters inexaEdit commands are at first constants such as6 or/abc/ in the commandsNEXT 6 orLOCATE /abc/.
In the place of such constants you may also use variables, they are called parameter variables.

There are three types of parameter variables:

• Type N (numerical). The value of the variable is a whole number.

• Type L (line number). The value is a line number.

• Type S (string). The value is a character string.

Some parameter variables are pre-defined. They get their value by the execution of certain commands:

• &Col is of type N and is set by the commandsLOCATE andRLOCATE as the variable indicates the column
in which the search argument was found.

• &Count is of type N and contains the result of the execution of the commandCOUNT.

• &Line is of type L and is set by the commands of theLOCATE family. The value is the line number
where the search stops.

• &Loc is of type S and is set by the commands of theLOCATE family. The value is the search argument.

Besides these parameter variables which are always present you may define own variables as you want. How this is
accomplished you can find in section 3.2.3,The Commands in Detail, under&.

The parameter variables allow you in a certain way to "calculate", for example you may add constants or build
substrings. These features are also described in the named section.

64 Chapter 3. The Editor and Its Commands

3.1.26 The Profile Files

AlthoughexaEdit has default settings for most of the parameters, which are most sensible in the most frequent cases,
there will occur situations, in which you would prefer other default settings. To solve this problem there are profile
files, i.e. files containingexaEdit commands that are executed when you startexaEdit. Strictly speaking, the profile
commands are even executed before the loading of the file you wish to edit happens.

There are two kinds of profile files forexaEdit:

• the installation profile file

• the private profile file

The installation profile is named such because it is in effect for the installed editor, no matter by whom it is called (on
multi–user–systems). The private profile on the other hand depends on the user identification which it is called from.
In detail,exaEdit acts like this:

exaEdit finds its installation profile via environment variable, in this case called

EXAEDITIP

To test whether this environment variable exists and which value it has, you may use the Unix command

echo $EXAEDITIP

and in Windows systems you apply the command

set exaeditip

If the value ofEXAEDITIP begins with the character ‘-’, it means that there is no profile file.

But if the environment variableEXAEDITIP does not exist at all,exaEdit uses the file.exaeditip in the directory
exaEdit has been called from. If this file does not exist,exaEdit works without the installation profile.

You create the private profile file on your own when you need it. The file is called

.exaeditpp

and is searched for byexaEdit in the directory from whichexaEdit has been called. If this file does not exist there,
exaEdit searches for it in your HOME directory. If there is no such file either,exaEdit works without a private profile.

exaEdit finds the home directory in Unix systems via the environment variableHOME, in Windows systems via the two
environment variablesHOMEDRIVE andHOMEPATH. The values of these you may determine as described above with
the commandsecho or set.

exaEdit first processes the installation profile and then the private one, which allows you to override commands
defined in the installation profile you do not like with your own corresponding commands in your private profile.

A useful example for an entry in the profile file is the command

cmdsep ,

which changes the command separator for the concatenation ofexaEdit commands from ‘;’ to ‘ ,’. This change is
an advantage if the character ‘;’ can be only produced with the help of theshift key and, in opposition to this, the
character ‘,’ can be typed without theshift key.

WhenexaEdit gets started and looks for the profile files in different ways (as explained above), the program stores
the current situation without informing you directly: the processing of the profile is supposed to happen noiseless.
However, you can inform yourself whenever you want during theexaEdit session how the profiles work at the start of
exaEdit. You receive this information by calling the command

profile ?

3.1. Functions 65

The messagesexaEdit presents are supposed to explain themselves. A short version of the actionsexaEdit generally
tries is available with the command

help profilex

profilex is only a help text, not a command. The functions of the commandPROFILE are described further down.

Some of the preferences forexaEdit areworkfile specific, e.g. the width of the number area you set with the command
SKEY. You can always put such a command in aexaEdit profile, so it is executed every time whenexaEdit is started.
But if you then open an additionalworkfile the commandSKEY works with its standard preference again. To make
sure theexaEdit profile is acknowledged in those cases, too, you can precedeexaEdit command lines in the profile
with

!

Lines marked such will be evaluated just like the other lines whenexaEdit is started. But whenever you open a new
workfile or delete aworkfile completely with the command

delete all

all command lines in the profile beginning with an exclamation mark will be evaluated again.

With the commandprofile and suitable parameters you can

• display

• execute

• load into the activeworkfile

the command lines of the profile.

When doing so, you can specify whether you want all lines to be processed, or only the ones beginning with an
exclamation mark. Details on how you have to use the commandprofile to achieve this can be found by typing
help profile or at the extensive description of allexaEdit commands in section 3.2.3.

As already mentioned at the appropriate places, the commands of the profile file are executed before the loading of
the file or when creating a newworkfile. But sometimes it may be an advantage to have a record ofexaEdit command
executed at any time. This is possible; not with aexaEdit profile but with theexaEdit commandEXEC.

3.1.27 Online Help

exaEdit offers two kinds ofonline help: first, the short help texts you get with theexaEdit command

help

(compare section 3.2.3,The Commands in Detail) and, second, the kinds for help on the screen that display the manual
at hand. This section only deals with the second type of help texts.

TheexaEdit manual is available in four different formats:

DVI
HTML
PDF
Postscript

If you need the manual but cannot find it, ask the person who has installedexaEdit on your workstation or turn to the
author ofexaEdit. Of course you can also find it via the homepage ofexaEdit in the WWW.

As the entire manual does not fit into the programexaEdit, it is a separate file which does not necessarily have to be
available on a workstation containingexaEdit. This may occur, for example, when it was forgotten to put the manual
file in an adequate directory. Another problem results from the fact that looking at the manual on the screen needs

66 Chapter 3. The Editor and Its Commands

other programs, which do not belong toexaEdit, and which are not available on every workstation. In addition to this,
these other programs need different kinds of representation of the manual.

exaEdit has the command

manual

for looking at the user manual on the screen and uses an external program, a set of parameters (optionally), and a file
to do this. After you entered the command, the program together with the parameters is unleashed on the file.

Since, as already mentioned, different programs, files and parameters are possible,exaEdit affixes names to sets
containing items that go together.

exaEdit always has one suchmanual set predefined. When using it, you will get theexaEdit manual that is available
in the WWW. After certain types of installation, a secondmanual set is made available. This is then linked to a local
copy of the manual.

You can always change or extend the ways how the manuals are called, either in a runningexaEdit session, or in the
exaEdit profile file. The command

manual * ?

gives a list of all currentmanual sets. Detailed further information can be found at the description of the command
MANUAL.

3.1.28 The Keyboard

exaEdit does not use key combinations for editor functions. Beside the normal character keys the following keys have
a meaning:

• The cursor keys (↑ →← ↓):
They move the cursor across the window.

• Thebackspace key (/−−):

It moves similar to the cursor key←, but deletes the character on the left of the cursor.

• Thereturn key (/−−|, enter):

It serves the input of commands, prefix commands and direct changes.

• The keyINS (or Einfg or â):

It serves to switch the insert mode on or off.

• The keyDEL (or Entf or a/):

It serves to delete a character.

• The keyHOME (or Pos 1):

It serves to undo all typed changes since thereturn key has been pressed the last time.

• The keyPgDn↓:
It serves to jump forward in theworkfile by one page in the window.

• The keyPgUp↑:
It serves to jump backward in theworkfile by one page in the window.

• TheFn keys:

Of these only the following ones have a meaning:

– F7: It serves to jump back in theworkfile by a whole page.

3.1. Functions 67

– F8: It serves to jump forward in theworkfile by a whole page.

– F10: It serves to jump backward in theworkfile by half a page.

– F11: It serves to jump forward in theworkfile by half a page.

• The keys at the key block on the right:

They are used by some keyboards as an alternative to theFn keys.

Often there are keyboards, on which not all of the keys mentioned above are existing. Sometimes, however, they are
existing physically but logically they are supplied with values that are not recognizable or receivable forexaEdit. In
such a case you can link some of the functions mentioned above with some of the existing and functioningF keys.

For example, reasonable editing is not possible without the keys to insert or delete characters (Einfg/INS and
Entf/DEL). If the F keys work at least, you may connect the two key functions with the commandPFK to F keys.
For more detail, compare section 3.1.23,Programmable Function keys, and the explanations on the commandPFK,
section 3.2.3,The Commands in Detail. Please, note that you may arrange these definitions into theexaEdit profile
file (compare section 3.1.26) as well.

Information on which functions can be linked toF keys can be found in the section 3.1.30,exaEdit Functions.

3.1.29 Keyboard Test

This section provides information on the situation in Unix systems, the instructions regarding theexaEdit command
KEYBOARD TEST are also valid for Windows systems, however.

Keyboards are one of the saddest chapters in Unix operating systems. In the struggle to respond flexibly to any
realizable and unrealizable wish, the allocation of keys and characters or functions was designed variably on several
levels. This raised the possibility to produce a giant chaos and, sometimes, this occasion was taken with at least partial
success.

If you hit a key on the keyboard andexaEdit responds to it in a particular way, there are besides the two natural levels
of change in meaning, i.e. labels on the key on the one hand and interpretation of the key byexaEdit on the other,
seven (7) other levels, at which the meaning of all or some keys may be altered.

To make sure that the keys you press have the meaning you wish, you may use the commandKEYBOARD with the
parameterTEST.

However, you have to mind the keys which are not handed over toexaEdit. If you think that these keys should be
available forexaEdit, you have to turn to the person who is responsible for the operating system of your workstation.

Testing a key works as follows: You enter the command

keyboard test

(minimal abbreviationKEYB T). AfterwardsexaEdit writes this in your window:

Press key:

Then you press the key you want to test. IfexaEdit answers this in one line, the test is finished. If you do not see a
reaction ofexaEdit, you have to hit thereturn key. If you want to test more than one key, it may be an advantage for
you to abbreviate the commandKEYBOARD TEST with X or Y (compare the respective commands) or you may define
the command by means ofPFK (compare the corresponding section) to aF key.

To be able to interpret the information provided byKEYBOARD TEST correctly and to be able to carry out the correc-
tions on the keyboard, you should know the following facts:

In the operating system Unix, normally you do not use a physical terminal but a logical one, a so-called terminal
emulation, a logical terminal. Information on which terminal emulation you are using is in the environment variable
TERM, which you may have displayed with the Unix commandecho $TERM.

68 Chapter 3. The Editor and Its Commands

Every key which is physically available may be used alone or together with theShift, Alt, Ctrl, . . . key. The
following text uses ‘key’ for single keys and such combination keys. The terminal emulation used decides on what
the keys mean. Please note that there are keys, the information of which does not go to the terminal emulation because
the keys are caught in advance.

The keys which are handed over to the terminal emulation are passed on in two ways by the terminal emulation: either
as normal keys (with a character assigned to it) or as a sequence of keys (often calledescape sequence for they begin
with theEsc key). Example: If you press the key labelledF1, the terminal emulationxterm asserts you have pressed
the five keys

\E [1 1 ~

in this sequence (\E means theEsc key). Other terminal emulations provide different key sequences.

To even out the nonsense, there is a so-calledterminfo file in the Unix operating systems. This file contains rules
for every terminal emulation which is used at the workstation how to compose the original information from the key
sequences. For example, in theterminfo file for the terminal emulationxterm is the rule that the key sequence\E[11~
means that the keyF1 has been pressed.

exaEdit uses the operating system supplementCurses (compare section 3.1.1,Starting a exaEdit Session). Curses
passes on the information toexaEdit, which Curses receives fromterminfo. Now you have got on far enough to
understand the informationKEYBOARD TEST provides. The response ofexaEdit always has this form:

Curses: ..., Characters: ..., Escape: ..., Function: ...

In this pattern, for... there are always made entries. These entries have the following meaning:

Curses: Here is the numerical value of a (character) key or the functionCurses receives fromTerminfo. If there
is a dash behindcurses:, this means thatexaEdit has read anescape sequence which does not exist interminfo.
This means that a row of single characters has been passed on byCurses to exaEdit. In this case, the third category
‘escape:’ was used and filled in.

Characters: Here is the character which is connected to the key if there is such a character. Else, there is the word
‘none’.

Escape: Here is theescape sequence (compare the explanation on ‘curses:’) if such a sequence was passed on.

Function: Here, there is the word ‘none’ if it deals with a character key. If any other key was passed through, it has
either a function inexaEdit (most of the cases) or the output is ‘?’. If the key which was pressed has a function in
exaEdit, the name of the function is the output in the window.

If you want to work withKEYBOARD TEST, you should call the command for some keys which are known to you and
which work before you try to find out something about unknown keys.

The persons who are responsible for the maintenance of your workstation can change theterminfo file and, by this
means, supply missing combinations ofescape sequences or correct mismatches betweenescape sequences and func-
tion keys.

3.1.30 exaEdit Functions

As explained in section 3.1.28,The Keyboard, there are several key functions that may be linked toF keys (by means
of PFK). Originally, all these functions existed as real keys on some keyboards but not on every keyboard. So, the
wish for substitution came up. However, in some cases the correlation with real keys is not obvious any more and,
therefore, these functions are called

exaEdit functions

In the following table you find a description of theexaEdit functions. In the column ‘name’ is the form you need
to apply together with the commandPFK. In the column ‘key’, there are the keys which normally should have corre-
sponding functions. If there areF keys in this column, they are the allocations whichexaEdit makes at the beginning
of every newexaEdit session.

3.1. Functions 69

name key(s) function
‘del’ DEL delete character at the place of the cursor
‘ins’ INS insert mode on or off
‘+page’ F8, PgDn↓ whole page forward
‘-page’ F7, PgUp↑ whole page backward
‘+half’ F11 half a page forward
‘-half’ F10 half a page backward
‘cleft’ ← cursor to the left
‘cright’ → cursor to the right
‘cup’ ↑ cursor upward
‘cdown’ ↓ cursor downward
‘pos1’ Pos1, Home restore picture after the lastreturn

The command

help function

shows a short help message in the usual format, allowing you to find anexaEdit function without consulting the user’s
manual.

3.1.31 Inserting Record Numbers

For records that are inserted between two existing numbers,exaEdit creates a new number that lies in the interval
between the existing ones. As mentioned in section 3.1.9,Record Numbers, this serves to ensure the strict ascendancy
of the record numbers.

Usually, the interval between two records will be 100 and both record numbers will also be divisible by 100, for
example:

800 ...
900 ...

Inserting one new record will create a record with the number820:

800 ...
820 new record
900 ...

Further records that are inserted will receive the numbers840, 860 and880. When even more records are inserted,
they will receive suitable numbers between880 and900.

If the standard intervals are not 100, the insertion intervals also will not be 20, but an interval suitable in comparison
with the standard interval. In all of these cases,exaEdit tries to achieve the following:

• Use ‘round’ numbers rather than ‘weird’ ones.

• When creating a new number, choose the lower half of the existing interval instead of the middle. The
reason for this is the assumption that further inserted records will more likely follow and not precede
the new record.

• Do not renumber as long as it is possible to insert new record numbers between existing ones.

• When renumbering is needed, do not use the standard interval, but a smaller one (e.g. 20 instead of 100
or 100 instead of 500). This way, not all of the following existing record numbers have to be renum-
bered.

70 Chapter 3. The Editor and Its Commands

• If a renumbering would result in record numbers larger than the permitted maximum of 99999999,
avoid this by choosing smaller intervals and choosing a lower record number as a starting point for the
renumbering. Thus the largest needed number will not exceed the maximum (only partially realized in
exaEdit version 01).

3.1.32 exaEdit Errors

It is very difficult to writeexaEdit, as any large program, without errors. Unfortunately, one has to live with the danger
of an unexpected abortion of the program. To save as much as possible of the work you have done,exaEdit tries to
write the content of the alteredworkfiles in new files on the disk. In particular, the following things happen:

exaEdit leaves the window mode and performs the rest of its jobs in the line mode. First, there appears one of these
messages:

exaEdit: Bus error
exaEdit: End process
exaEdit: Illegal instruction
exaEdit: Segmentation fault

Second, a fileexaEdit.dmp is opened, in whichexaEdit is supposed to write information that could be necessary for
the search for mistakes. Success or failure of this task lead to the message

exaEdit.dmp [not] opened

The content of the fileexaEdit.dmp cannot be predicted. It depends on the progress ofexaEdit and on the place, at
which the programexaEdit was aborted.

To save the changedworkfiles, exaEdit checks allworkfiles on whether they were altered but not saved yet. For every
such aworkfile a file with a certain name is opened. All the records of theworkfile are expected to be written in the
new file. Success or failure of the opening of the new file leads to the message

exaEdit.jjjj.mm.tt-hh.mm.ss.wfn.dsn [not] opened

Here, the following abbreviations are used:

jjjj for the year
mm for the month
tt for the day
hh for the hour
mm for the minute
ss for the second
wfn for the name of theworkfile
dsn for the name of the file.

If the records of theworkfile could be saved successfully, you receive the message:

Data saved

After every theworkfiles have been checked and saved to files when necessary, the protocol fileexaEdit.dmp is
closed (if it was possible to open it). This is indicated by the message

exaEdit.dmp closed

3.1.33 exaEdit Tests

exaEdit contains several mechanisms which allow the person who developsexaEdit to collect information on errors.
These mechanisms are possibilities to test the program and they are activated or deactivated with the commandTEST.

3.2. The Commands 71

The syntax of the commandTEST is described in section 3.2.3,The Commands in Detail(page 111). The meaning of
the parameters is not specified, because theexaEdit-user cannot really utilize this command.

3.2 The Commands

3.2.1 Notation

In the following text, the commands will be presented in detail one after the other. The prefix commands are described
in section 3.3.

The description of a command begins with the command name in the upper left corner, followed by the syntax of the
command. In the same line there is the minimal abbreviation of the command on the right.

If there are other commands with the identical syntax and the same meaning as the command to be explained, the
other commands are listed behind the first command and separated with a vertical line (’|‘). Example:

BACK | UP | - [n] BA | U | -

This means that the commandBACK is identical with the commandsUP and- (minus sign). The minimal abbreviation
of BACK is BA, the minimal abbreviation ofUP is U, and there is no abbreviation for-.

To describe the parameters (or operands) of a command, the following notation is used:

square brackets ([]): They occur before and behind parameters which may be either specified or left out. In the latter
case a default setting takes place, which is precisely described.

Example:BACK [n] means that you may either use ‘BACK’ or ‘ BACK n’. In this case, the default setting
is 1. For more information, compare the description of the commandBACK.

vertical line (|): This character separates equivalent parameters, of which you must not specify more than one.

Example:SKEY [n | ?] means that you may enter either ‘SKEY n’ or ‘ SKEY ?’ (or only ‘SKEY’) but not
‘SKEY n ?’. You find more details in the explanation on the commandSKEY.

small letters: Small letters are used for parameters, for which you have to set (numerical) values.

Example:UP [n] specifies by how many records the current line has to be moved upward. To use this
specification you have to use a number forn (if you specify a parameter).

capital letters: Capital letters are used for parameters you have to use precisely the way they are described. Of
course, you may write them in small letters to enter them. The distinction in this text only serves to
convey the information whether or not you have to replace a parameter word with a value.

Please, keep in mind that parameters may be abbreviated as well if the abbreviation is not ambiguous. The minimal
abbreviation of parameters is not explained in this text.

3.2.2 Messages

Basically, all messages and error messages a command can produce are listed in the description of the specific com-
mand, like this:

message, exaEdit message, ...

All these messages appear in the index of this manual, where instead ofmessage the actual message is listed.

Additionally there is the chapter 5, which is an extract of the index limited to the messages only.

The exception of these rules are some messages generated by many commands. Accordingly many entries in the index
and the messages chapter would not be all too informative. These messages are explained in the messages chapter

72 Chapter 3. The Editor and Its Commands

without page references, while their index entries refer to the according page in the message chapter and to the current
page.

Begin column larger than end column
Begin of data
Character string too long
End of data
Number too large
Parameter variable no character string
Parameter variable not defined
Parameter variable not numerical
SET storage unused
SET storage invalid
There is no next record
There is no previous record
There is no column 0
You cannot ... the top line

And finally there are some error messages that have reasons so obvious that probably nobody would want to read the
complete command description:

Command in error: ...
Number 0 not allowed
Operand missing in: ...
Parameter missing
There is no such command
Wrong parameter

Therefore their entries in the index and in the message chapter refer to the current page only.

3.2.3 The Commands in Detail

+ | DOWN | NEXT [n] + | DO | N

The pointer to the current line is set downward (in the direction of the end of theworkfile) by n lines. Since the current
line has a fixed position in the window, the text moves upward.

If you do not specifyn, the value 1 is assumed.

If n is greater than the number of records after the current line,exaEdit writes

End of data

in the dialogue zone and the current line remains unchanged.

- | BACK | UP [n] - | BA | U

The pointer to the current line is set upward (in the direction of the beginning of theworkfile) by n records. Since the
current line has a fixed position in the window, the text moves downward.

If you do not specifyn, the value 1 is assumed.

If n is larger than the number of records (including thetop line), exaEdit writes

Begin of data

in the dialogue zone and the current line remains unchanged.

3.2. The Commands 73

_ | CALL externalcommand _ | CAL

The Unix or shell or DOS command ‘externalcommand’ is passed on to external execution.

When the external command is finished,exaEdit displays the message

exaEdit: Press Enter, when you have seen everything

if the program was in the window mode, before. When you have pressed the key,exaEdit is in the same status as
before.

If exaEdit was in the line mode before you called the external command, the message

exaEdit: External command ended

shows the finishing of the external command. Any command that can be called in the normal status of a Unix session
or Windows command line is possible.

When you wish to continue usingexaEdit while an external command is executed in Unix, you add an& at the end of
the external command, as usual in Unix.

&name [+NUMBER | +STRING | +LINE | =value | ? | -] &name

The command& provides definition and handling of parameter variables. What parameter variables are and what you
can do with them is described in section 3.1.25,The Parameter Variables.

The command must always contain a variable name,& alone is wrong. For the parameters? and- you may specify
an* instead of a name which means that all parameter variables are meant.

Specifying no parameter at all is the same as specifying?: The specified parameter variable is shown. The information
you get is

• The type: One of the lettersN, L or S for the type (confer to section 3.1.25.)

• The name of the parameter variable.

• The value of the parameter variable.

With the parameter+NUMBER you define a new parameter variable for numerical values. The name must consist of 1 to
8 letters. Capital and small letters are distinguished. Please note that the names of the pre-defined standard parameter
variables have a large initial letter and small letters otherwise. In order to assign a value to the newly defined parameter
variable you will have to recall the command& with the parameter=value.

The parameters+STRING and+LINE serve likewise the definition of parameter variables for character strings and
record numbers respectively.

With the parameter=value you assign a (new) value to an already existing parameter variable. Such a value is either
a constant (suitable for the type of the variable) or a certain simple expression.

Expressions allowed for numerical parameter variables are sum and difference of constants. Also for parameter
variables representing record numbers you may add or subtract numerical constants which then gives a new record
number which lies some records below or above. Parameter variables which represent character strings can be used
in an expression in the following ways: They may be concatenated with a character string by using a plus sign or a
substring may be built with the parameter sequenceSUBSTR /string/ begin length.

As in all exaEdit commands constants may be replaced by suitable parameter variables. This is valid for the command
& also. In this way a relatively powerful "arithmetic" with parameters is possible.

With the parameter- the specyfied parameter variable is deleted. If you use an* all parameter variables will be
deleted. Please note however, that the standard parameter variables cannot be deleted.

Some examples (the record numbers of the file are assumed to be 100, 200, ...):

74 Chapter 3. The Editor and Its Commands

&anz+n
&anz =3
&Col=&anz + 4
&Line = 0500
&Line = &Line - 2
&Loc = -abc
&Loc = &Loc + .de.
&Loc = substr&Loc3 2

Then the command&*? will show the following:

N &Col =7
N &Count =0
L &Line =00000300
S &Loc =/cd/
N &anz =3

ALIGN [(l1 [l2])] /string/ [MOVEALL] [H] [I] [n | ALL] AL
or
ALIGN [(l1 [l2])] col [LEFT | RIGHT [MOVEALL]] [n | ALL] AL

This command aligns the records horizontally.

Lines may be specified explicitly: from linel1 to line l2 or from line l1 to the end of data. They may also be
specified implicitly:n lines beginning with the current line or all lines of theworkfile.

In the first version all those lines of the concerned lines are aligned which contain the character stringstring. They
will be aligned in such a manner thatstring is positioned one below the other. The result goes after that line in which
string is farthest to the right. The reason for that is that all lines may be scrolled to the right but not all to the left.
Those characters which are before thestring stay in its place. If, for example, you have the lines

abc.def.de - - [23/Dec/2005...
xyx.ghijkl.at - - [24/Dec/2005...

then they look after the commandALIGN /[/ ALL like

abc.def.de - - [23/Dec/2005...
xyx.ghijkl.at - - [24/Dec/2005...

Additionally you may align the lines as a whole by specifying the parameterMOVEALL which provides for moving of
the characters before thestring as well. Therefore the commandALIGN /[/ MOVEALL ALL would have given:

abc.def.de - - [23/Dec/2005...
xyx.ghijkl.at - - [24/Dec/2005...

In the second version the alignment of the concerned lines is done according to the specified column. If this column
contains a blank character and if there are no other parameters given, then all characters after that column are moved
to the left in such a way, that the the first non-blank character comes in that column. But if you specify the parameter
RIGHT then all characters before that column are moved to the right in such a way, that the first non-blank character
comes to this column. If you specify the additional parameterMOVEALL then the whole line will be moved to the right,
that is, also the characters after that column take part in the moving. If you have, for example, the following lines:

abc def
1234567 90

xyz ABC

then the commandALIGN 7 ALL has the result

3.2. The Commands 75

abc def
1234567 90

xyz ABC

the commandALIGN 7 RIGHT ALL has the result

abc def
1234567 90

xyz ABC

and the commandALIGN 7 RIGHT MOVEALL has the result

abc def
1234567 90

xyz ABC

BACK | - | UP [n] BA | - | U

The pointer to the current line is set upward (in the direction of the beginning of theworkfile) by n records. Since the
current line has a fixed position in the window, the text moves downward.

If you do not specifyn, the value 1 is assumed.

If n is larger than the number of records (including thetop line) before the current line,exaEdit writes

Begin of data

into the dialogue zone and the current line remains unchanged.

BOTTOM B

The pointer to the current line is positioned to the last record of theworkfile. Since the current line takes a fixed
position in the window, the rest of the text slides upward.

CALL |_ externalcommand CAL |_

The Unix or shell or DOS command ‘externalcommand’ is passed on to external execution.

When the external command is finished,exaEdit displays the message

exaEdit: Press Enter, when you have seen everything

if the program was in the window mode, before. When you have pressed the key,exaEdit is in the same status as
before.

If exaEdit was in the line mode before you called the external command, the message

exaEdit: External command ended

shows the finishing of the external command. Any command that can be called in the normal status of a Unix session
or Windows command line is possible.

When you wish to continue usingexaEdit while an external command is executed in Unix, you add an& at the end of
the external command, as usual in Unix.

76 Chapter 3. The Editor and Its Commands

CASE [? | U | M | L] | [? | I | S] CA

The commandCASE has two different uses. First the use ofCASE with the parametersU, M, andL.

Normally exaEdit uses the letters you typed in the way they are: small letters remain small, capital letters remain
capitals. This corresponds to the default setting

case m or case l

(m = ‘mixed’, l = ‘ lower’). Contrasting, if you change the setting inexaEdit with

case u

(u = ‘upper’) all the small letters you entered will be translated to capital letters (a to z, no German umlauts).

Any line you ‘touch’ by changing a character is transformed from small to capital letters. As long asU is in effect, a
U in the status line will indicate this.

Now for CASE with the parametersI andS. The command

case i

causes the commandsCHANGE, SSPLIT, and all the commands of theLOCATE family to act as if they had been called
with the parameterI. So the commands will work case insensitive (i.e. they will not distinguish between upper case
characters and lower case characters). The command

case s

restores the default performance of the mentioned commands, which is to work case sensitive.

case ?

displays the current setting of both switches in the output of one message of each of the following two message pairs:

Mixed (lower): without translation to capital letters
Upper: with translation to capital letters (no German umlauts)

Case-sensitive
Case-insensitive

When the commandCASE is given without any parameters at all, the default values of both switches are restored:
case m andcase s are in effect.

CCOPY [(l1 [l2])] c1 [c2] COLUMN [+ | -]col [LINE [+ | -]num] [n] CC

CCOPY means column copy, i.e. it copies columns of a line. It should not be confused with the commandCOPY, which
copies lines.

ccopy 5 column 20

copies column 5 to column 20 of the current line,

ccopy 5 10 col 20

copies the columns 5 to 10 to the columns 20 to 25. Note that you specify only the first of the target columns, since
the number of columns has been set when specifying the source columns. Copying works as follows: First, the
columns behind the target column are moved to the right by the needed amount of columns. Then, the source columns
are copied into the target area. This is the same method that is used with the commandCOPY, which also does not
overwrite but inserts the copied data.

Source and target area may not overlap. If they do, you receive the message

Source and target area overlap

3.2. The Commands 77

Instead of using absolute column specifications you can use relative ones if you add a leading sign to thecolumn
specification:

ccopy 5 10 c +15

has the same effect as the command above.

Until now, the commands were limited to the current line. As usual, you can have the command applied ton following
lines by specifying a number as last parameter:

ccopy 5 10 colu 20 7

applies the command to 7 lines. If theworkfile does not have sufficient lines, you get the message

End of data

The methods described until now are executed from the current line on. Alternatively, you can also specify the lines
you want to be affected enclosed in parentheses as first parameter:

ccopy (500 1200) 5 10 c20

This means,CCOPY will be applied to the lines 500 to 1200, wherever the current line is. The line numbers specified
may also be symbolic line numbers (t, f, p, *, n, l, b, s). If you specify only one line number, it is assumed the
second line number is equal to the first. Please mind the parentheses.

About the last parameter ofCCOPY: Until now, the target columns have been in the same line as the source columns
were, but you can also specify the target lines separately:

cc5 10c20 line 700

This copies the columns 5 to 10 of the current line to the columns 20 to 25 of line 700.

As with theCOLUMN specification, you can precede theLINE specification with a leading sign, thus making the column
specification a relative one:

cc5 10c20 l-6

If the line given cannot be found, you get the message

Target record not found

Of course, you can also add the (two alternative) numbers of affected lines:

ccopy (500 b) 8 column 9 line 000400

Please keep in mind that you cannot specify a target line that does not exist (yet). So, if you want to copy something
behind the last line of theworkfile, you have to create that (empty) line first.

CCOPY allows for whole rectangles of theworkfile to be copied to another part of theworkfile.

CDELETE [(l1 [l2])] c1 c2 [n | ALL] CD

CDELETE means column delete, i.e. it deletes columns of a line.

cdelete 5 5

deletes the column 5 of the current line,

cdelete 5 10

deletes columns 5 to 10 of the current line. When deleting columns, the characters to the right side of the deleted area
are moved to the left into the now empty area. Note that even if you want to delete only 1 column, you have to specify
both the beginning and ending column of the area to be deleted.

By specifying a numbern as last parameter you can achieve that the columns inn lines starting with the current one
are deleted. If there are not enough lines in theworkfile, the command terminates and you receive the message:

78 Chapter 3. The Editor and Its Commands

End of data

Instead of the numbern of lines to be deleted you could also specify the parameterALL, which determines that all the
specified columns are to be deleted in all lines of theworkfile.

Instead of a number in the last parameter you can specify the area of lines for which the deletion is to be executed.
To do so the first parameter has to be the line numbers enclosed in parentheses. You can use explicit or symbolic line
numbers:

cd (f 1200) 5 10

This means that the columns 5 to 10 of all lines from the first one to the line number 1200, both lines inclusively, will
be deleted.

The specification of line numbers and of an amount of lines exclude each other.

If you specify only one line number within the parentheses, the second number is assumed to equal the first.

CHANGE [col1 [col2]] /old[/[new[/ [n] [A] [D] [H] [I]]]] C

Related command:REPLACE

In the current line the character string ‘old’ is replaced by the character string ‘new’.

The basic syntax of theCHANGE command is

CHANGE /old/new/

In this formula you have to put character strings for ‘old’ and ‘new’. The character strings have to be embedded in
delimiters, which is a ‘/’ in this text. As a delimiter, you may use any character except digits or spaces. In practice, the
special character on the lower right of your keyboard # proved to be very useful. You only have to choose a different
delimiter if this character occurs in the old or new character string.

Abbreviations:

CHANGE /old/new

is possible if you do not need one of the parameters.

CHANGE /old/

is sufficient if you do not want to replace the character string but only delete it. If you want to delete a character string
and need one of the parameters, you have to writeCHANGE /old//...

CHANGE /old

is a further abbreviation ofCHANGE /old/.

Restriction to columns:

Normally, the character string may be at any place within a record. You can restrict the possible position of the
character string to certain columns with the commandZONE (compare the entry for this command). A restriction of
the zone for the search with theCHANGE command is possible as well by specifying the columns. For example,

CHANGE 10 20 /old/new/

only changes the character string ‘old’ if it occurs between the columns 10 and 20, both inclusive. In this specification
the borders of theZONE area are ignored. If you specify only one column, theCHANGE command will operate from
this column on to the last column of the record.

Expansion on several lines (records):

Without specifications changes are only done within the current line. With the specification of the number of linesn,
for example

3.2. The Commands 79

CHANGE ... /old/new/ n

you askexaEdit to search for the old character string within the current line and then - 1 following lines and to do the
changes there if necessary.

If the character string ‘old’ is not found within the specified lines, the current line keeps its position and you receive
the message

Character string not found: old

In opposition to this, if the character string is foundm times, the current line moves byn lines downward (consequently,
the data in the visible part of the window move byn lines upward) and you receive the message

m times changed

By default, the search string is only searched for once per record. If the record contains the string more than once,
only the one furthest to the left will be changed. To change all occurrences of the string you have to use the parameter

A

When using the parameter

D

(= ‘display’), all lines that have been changed are displayed in the dialogue zone.

You can edit in hexadecimal form by giving the parameter

H

To this end, the given (one or two) character strings must be written in hexadecimal form. Since 1 byte is always
defined by 2 hexadecimal characters,exaEdit always demands that the amount of the entered hexadecimal characters
is even. OtherwiseexaEdit will generate the error message

Odd number of hex characters

Entering a character that is not hexadecimal results in the error message

Wrong hex character

If, for example, you would like to delete all Carriage Return characters (hexadecimal0d) in a file, you select the top
line of theworkfile and enter

change /0d// 999 h

(Here the precondition would be that the file has less than 1000 lines and0d appears only once per record.)

When the parameter

I

(= ‘case–insensitive’) is given, the search for the character string that is to be changed will be case insensitive (i.e. no
distinction between lower and upper case characters). This means that

change /ab/12/ i

will change eitherab or Ab or aB or AB.

If you have to use the parameterI regularly, the use of the commandCASE is recommended.CASE can force other
commands to act as if the parameterI was given. For further information seeCASE.

You are not allowed to specify the commandsI andH together. If you do it still, the parameterI will be ignored with
the message

’I’ will be ignored as H is specified

80 Chapter 3. The Editor and Its Commands

The command will then be executed as if onlyH had been given.

CMDSEP [? | x] CMD

Usually, you can enter more than oneexaEdit command at once by separating them with a semicolon (‘;’). With the
commandCMDSEP you may change the separator (CMDSEP x) or ask for the current setting (CMDSEP ?).

If you only enter ‘CMDSEP’ (without any parameter), the default setting is restored. It is equivalent to the command

CMD ;

As separator you may use any character except the question mark (‘?’) and letters.

Since you will need the command separator frequently when usingexaEdit, the separator should be on a key that is
easy to reach and you should be able to write the separator without the shift key (key). So, you are recommended
not to use the semicolon if it can be only reached with the shift key. In this case you should use another character as
command separator, for example the comma:

CMD ,

You may save the change of the separator to yourexaEdit profile file.

CMOVE [(l1 [l2])] c1 [c2] COLUMN [+ | -]col [LINE [+ | -]num] [n] CM

CMOVE means column move, i.e. it moves columns of a line. It should not be confused with the commandMOVE, which
moves lines.

cmove 5 column 20

moves column 5 to column 20 of the current line,

cmove 5 10 col 20

moves the columns 5 to 10 to the columns 20 to 25. Note that you specify only the first of the target columns, since
the number of columns has been set when specifying the source columns.

Moving works as follows: The columns starting with the target column are moved to the right by the number of
columns to be moved. The characters to be moved are written into the gap just produced and then deleted at their
original place. The gap produced by this is closed again by moving to the left the characters at the right side of the
gap. In the examplecmove 5 10 col 20 the characters to be moved can afterwards be found in columns 14 to 19,
because they have been moved "between" the original columns 19 and 20. This is the same method that is used with
the commandMOVE, which also does not overwrite but inserts the moved data and leaves no gap at the move source.

Source and target area may not overlap. If they do, you receive the message

Source and target area overlap

Instead of using absolute column specifications you can use relative ones if you add a leading sign to thecolumn
specification:

cmove 5 10 c +15

has the same effect as the command above.

Until now, the commands were limited to the current line. As usual, you can have the command applied to n following
lines by specifying a number as last parameter:

cmove 5 10 colu 20 7

applies the command to 7 lines. If theworkfile does not have sufficient lines, you get the message

End of data

3.2. The Commands 81

The methods described until now are executed from the current line on. Alternatively, you can also specify the lines
you want to be affected enclosed in parentheses as first parameter:

cmove (500 1200) 5 10 c20

This means,CMOVE will be applied to the lines 500 to 1200, wherever the current line is. The line numbers specified
may also be symbolic line numbers (t, f, p, *, n, l, b, s). If you specify only one line number, it is assumed the
second line number is equal to the first. Please mind the parentheses.

About the last parameter ofCMOVE: Until now, the target columns have been in the same line as the source columns
were, but you can also specify the target columns in other lines:

cm5 10c20 line 700

This moves the columns 5 to 10 of the current line to the columns 20 to 25 of line 700.

As with theCOLUMN specification, you can precede theLINE specification with a leading sign, thus making the line
specification a relative one:

cm5 10c20 l-6

If the line given cannot be found, you get the message

Target record not found

Of course, you can also add the (two alternative) numbers of affected lines:

cmove (500 b) 8 column 9 line 000400

Please keep in mind that you cannot specify a target line that does not exist (yet). So, if you want to move something
behind the last line of theworkfile, you have to create that (empty) line first.

CMOVE allows for whole rectangles of theworkfile to be moved to another part of theworkfile.

CODEPAGE [? | DOS | WIN] COD

The representation of special characters can differ within the 32–bit versions of Windows systems.

With WIN, exaEdit uses the representation that is commonly used by ‘real’ Windows programs (such asnotepad).
With DOS, exaEdit uses the representation that is usually used byDOS programs (such astype).

The default of this switch isWIN. The parameter? can be used to display the state of the switch. The resulting
messages are

DOS resp. WIN

If you useCODEPAGE in Unix, exaEdit you will get the message

CODEPAGE is only for Windows systems

COMPRESS [? | #n | n | ALL] COM

Reverse command:EXPAND

This command compresses records by replacing appropriate sequences of spaces with tab signs. A tab sign means:
Put spaces from here to the next tab stop between the last character to the next character. The tab stops are the columns
1, 9, 17, 25, and so on. If a line contains a row of spaces with a tab stop in between them, the first space is replaced
with a tab sign (x09) and the rest of the line is moved to the left from the tab stop to the tab sign. This procedure is
repeated as often as possible.

Without specification, only the current line is compressed. You may specify the number of linesn (from the current
line on) or all records of theworkfile with the parameterALL.

82 Chapter 3. The Editor and Its Commands

Since this kind of compressing is not very sensible if only short sequences of spaces are compressed,exaEdit only
compresses rows of at least four spaces. You can change this number with the command

compress #n

To display the current setting, you use the command

compress ?

exaEdit will answer with

compress #...

This can be used to change the value.

If there have been compressions after theCOMPRESS command,exaEdit provides a message of success:

Compressed n times in m records by k blanks

If m=1, ‘records’ is replaced by ‘record’ in the display.

If there is nothing to compress, the current line remains the same. Normally,exaEdit moves the current line to the
record that is compressed last. If you setn to a number that would needexaEdit to compress records beyond the end
of the file (messageEnd of data), the current line is moved to the last record of the workfile. After using parameter
ALL, the current line remains the same, no matter if there has been any compression or not.

CONCAT [/string/ | n] CON

Reverse command:SSPLIT

With this command you concatenate the record of the current line with the following record that disappears as an
independent record, as a consequence.

If you do not specify a parameter, the following record is placed immediately behind the last character (no space) in
the current line.

If you specify a character string, it is placed between the two records to concatenate. A frequent application of this is
to put a space between the two parts.

Instead of a character string you may also specify a column. The column designs the place in the record of the current
line where the content of the following line should be placed. If the column is behind the last character (no space),
additional blanks are inserted. If the column specified comes before the end of the current record, the characters of
the second record overwrite the characters of the current line. If the second record is short enough, the rest of the
characters of the current line remains. The behaviour ofCONCAT is similar to the behaviour of the commandREPLACE.
The only difference is that the characters to be inserted do not have to be specified but are taken from the second
record.

The following example illustrates this; the first line is the current line.

Do give my kindest regards to
Peter

command result
concat Do give my kindest regards toPeter
concat / / Do give my kindest regards to Peter
concat 35 Do give my kindest regards to Peter
concat 5 Do gPetery kindest regards to

If the line after the current line is empty when you callCONCAT, the command

CONCAT /string/

3.2. The Commands 83

works like the expansion of the current line by the characters ‘string’. (With the commandSSPLIT (compare the
entry there), you can create an empty line if you wish to use the effect described above to expand a record.)

COPY [num1 [num2] [wfname]] CO

The commandCOPY copies one or more records behind the record of the current line in theworkfile. The records to
be copied are specified by their number or a symbolic number.

The number of a record may be specified without the leading zeros. Symbolic record numbers resp. line numbers are:

* for the current line.
p (= previous) for the line before the current line.
n (= next) for the line behind the current line.
f (= first) for the first line of theworkfile.
l (= last) for the last line of theworkfile.
t (= top) for thetop line of theworkfile.
b (= bottom) for the last line of theworkfile.
s (= set) for the line marked withSET.

If you specify only one number in theCOPY command, only this record will be copied. If you specify two numbers,
all records from the first to the second number will be copied. For this purpose, it is necessary thatnum1 ≤ num2 is
valid. If that is not the case, you receive the message

First number larger than second

If you specify a number that does not exist in yourworkfile, you receive the message

Number ... not found

The. . . are replaced by the number in the output.

You also have to mind that the target area of theCOPY command is not within the area to be copied. To be precise,
the target area of the copy command is the place between the current and the following record. The area to be copied
must not contain the current line and the line following the current line. This would be the case if the command was
COPY * num2 andnum2 was behind the current line. If you do not comply to these restrictions, you will receive the
message

Target in COPY area

Some examples:

co ∗ doubles the current line.
co b copies the last line.
co f l copies the wholeworkfile beneath the current line (only possible if the current line is the last

line or the top line).
co500∗ copies from line 500 to the current line.
co p ∗ copies from the line before the current line to the current line, i.e. doubles two records at the

place of the current line; that is, changes the 2 linesa b to the 4 linesa b a b, if b was the
current line.

Without the specification of a third parameter, the records are taken from theworkfile where they should be inserted.
It is also possible to specify aworkfile as third parameter where the records should be fetched for copying. If the
specifiedworkfile does not exist, you receive the message

Workfile not found

For example, the command

copy 1000 1500 abc

84 Chapter 3. The Editor and Its Commands

copies the records with the numbers1000 to 1500 from theworkfile abc behind the current line of the activeworkfile.

Another example: You want the complete content of the mainworkfile (main) in a newworkfile namedabc. The
easiest solution is to use

wf abc;co f l main

Please, note thatCOPY T B copies thetop line as well, which will not be desirable in most cases.

When specifying theworkfile name, you have to specify the second parameter (the second number) (even if it is
identical with the first one) if theworkfile name might be mixed up with a symbolic line number. For example:

co 500 a

copies the record with the number500 from theworkfile a, while

co 500b

refers to all the records in the activeworkfile from number500 onward, so that you have to write

co500 500b

if you want to copy the record500 from theworkfile b.

The copied records receive numbers that match with the existing numbers of the two records, in which the copied
ones have been inserted. Since the method for the definition of the new numbers is the same for other commands, it
is described only once in section 3.1.31,Inserting Record Numbers.

COUNT num1 [num2] COU

The commandCOUNT counts the number of records in theworkfile. The parameters mark the borders of the area, in
which the records should be counted. The two records on the border are counted as well.

The record number(s) may be entered without leading zeros. Record numbers may be symbolic ones as well:

* for the current line.
p (= previous) for the line before the current line.
n (= next) for the line after the current line.
f (= first) for the first line of theworkfile.
l (= last) for the last line of theworkfile.
t (= top) for thetop line of theworkfile.
b (= bottom) for the last line of theworkfile.
s (= set) for the line marked withSET.

If you call COUNT with only one parameter,exaEdit completes the command and assumes the record of the current
line as second parameter.

As a result,exaEdit writes the number found in the dialogue zone. If the number of the first record is greater than the
number of the second one, the result is marked as being negative with a minus sign in front of it.

The result of the count is written into the parameter variable&Count.

3.2. The Commands 85

DELETE [n | ALL] DE

Related commands:DELETEL and the prefix commandDELETE.

The commandDELETE deletes the record of the current line and then - 1 following records ifn is specified.

The specification ofALL deletes all records of theworkfile.

After the deletion, the last record previous to the deleted records is positioned into the current line.

DELETEL | DL num1 [num2] DL

Related commands:DELETE and prefix commandDELETE.

The commandDELETEL (its abbreviation is onlyDL) deletes only one line if you specify only one parameter. If you
specify both parameters, the records from the numbernum1 to the numbernum2 (including) are deleted.

The numbers of the record(s) may be specified without leading zeros.

Symbolic record numbers resp. line numbers are allowed as well. That may be:

* for the current line.
p (= previous) for the line before the current line.
n (= next) for the line after the current line.
f (= first) for the first line of theworkfile.
l (= last) for the last line of theworkfile.
t (= top) for thetop line of theworkfile.
b (= bottom) for the last line of theworkfile.
s (= set) for the line marked withSET.

Example:

dl f l

Deletes all records in theworkfile and therefore is identical withDELETE ALL.

After the erasure, the last record before the deleted records is set into the current line.

DISPLAY [n | ALL] D

The commandDISPLAY shows the record of the current line in the dialogue zone.

If you specify a numbern of records or the parameterALL, n records (starting with the current line) or all records of
theworkfile will be listed.

The main application of this command is in the line mode ofexaEdit. In the line mode, the records of theworkfile are
not displayed in the window if you do not ask for it with the commandDISPLAY.

Besides, you can also useDISPLAY in the (normal) window mode to create a copy of the record of the current line in
the dialogue zone, for example. Then you could use the line for the number command (change the line and create a
new line out of the old one).

Note, please, thatDISPLAY only shows the first line of a record that takes more than one line in the data zone.

86 Chapter 3. The Editor and Its Commands

DL | DELETEL num1 [num2] DL

Related commands:DELETE and prefix commandDELETE.

The commandDELETEL (its abbreviation is onlyDL) deletes only one line if you specify only one parameter. If you
specify both parameters, the records from the numbernum1 to the numbernum2 (including) are deleted.

The numbers of the record(s) may be specified without leading zeros.

Symbolic record numbers resp. line numbers are allowed as well. That may be:

* for the current line.
p (= previous) for the line before the current line.
n (= next) for the line after the current line.
f (= first) for the first line of theworkfile.
l (= last) for the last line of theworkfile.
t (= top) for thetop line of theworkfile.
b (= bottom) for the last line of theworkfile.
s (= set) for the line marked withSET.

Example:

dl f l

Deletes all records in theworkfile and therefore is identical withDELETE ALL.

After the erasure, the last record before the deleted records is set into the current line.

DOWN | + | NEXT [n] DO | + | N

The pointer to the current line is moved downward to the end of theworkfile by n records. Since the current line has a
fixed position in the window, the text moves upward.

If you do not specifyn, the value 1 is assumed.

If n is greater than the number of records after the current line,exaEdit writes

End of data

as a message in the dialogue zone and the current line remains unchanged.

END | QUIT E | Q

The commandEND finishes the editor. In advance to the finishing, it is checked whether you made changes in the
existingworkfiles. If this is the case, you are informed about it and you have a chance to continue theexaEdit session
to save the changedworkfiles onto a data medium.

If there is only theworkfile MAIN in theexaEdit session, you receive the message

Changes not saved
Press J or Y to stop:

In line mode, the second line is:

Enter J or Y to stop:

If there are otherworkfiles as well, the message reads instead:

Workfiles not saved: ...

Instead of the. . . theworkfiles concerned will be listed.

3.2. The Commands 87

If you decide not to save the changes, you press the key ‘j’ or ‘ y’ (small letters or caps) and the editor is stopped
immediately. Contrasting, if you press any other key, the processing of the commandEND stops and you can go on
editing as usual.

Please, note that it is sufficient to press a key to answer the question whether you want to leave the editor. It is not
necessary to press thereturn key afterwards.

EXEC EX

The commandEXEC requires that aworkfile calledEXEC exists. Thisworkfile must containexaEdit commands only.

If the commandEXEC is called, theexaEdit commands from theworkfile EXEC are executed in theworkfile where the
commandEXEC was called.

If the workfile EXEC does not exist, you receive the message

Workfile not found

After the commandEXEC nothing else may appear in a command line.

The command lines in the fileEXEC may not exceed the window width of theworkfile where the commandEXEC is
given. If you do not comply to this restriction, you receive the message

n. EXEC line longer than window width ...

Forn, exaEdit will substitute the line number, and the dots will be replaced with the current window width.

For example, you can useEXEC to save frequently needed allocations ofF keys asexaEdit commands (comparePFK)
together in a file. When there is need for these allocations you can load them in aworkfile calledEXEC and bring them
into effect in allworkfiles of your exaEdit session. This procedure is an alternative to the application of theexaEdit
profile.

With EXEC all commands are executed as usual, with one exception: The commandFILE does not have the usual
safety queries like

Old data set, press J or Y to replace it:

etc. Thus, special care should be taken when usingFILE within EXEC.

EXPAND [n | ALL] EXP

Reverse command:COMPRESS

This command expands tab signs spread among the data into spaces. If you do not specify a parameter, the record
of the current line is changed. The specificationn denotes thatn records, beginning with the current line, should be
worked on. If you specifyALL, all records of theworkfile will be changed if necessary.

The present setting ofexaEdit assumes tabulators at columns 9, 17, 25, ...; it is not possible to change the default
setting.

The expansion procedure works as follows: If a tab sign is found (hexadecimal value x09), it is replaced by a blank.
The text after the tabulator sign is moved to the next tab stop to the right; the gap that might result is filled with space
signs. This procedure is used for all tabs of the record.

If some expansions have been made because of theEXPAND command,exaEdit provides a message of success:

Expanded n times in m records by k blanks

If m=1 is valid, ‘records’ is replaced by ‘record’.

If there is nothing to expand, the current line remains the same. Normally,exaEdit moves the current line to the record
that is expanded last. If you setn to a number that would needexaEdit to expand records beyond the end of the file

88 Chapter 3. The Editor and Its Commands

(messageEnd of data), the current line is moved to the last record of the workfile. After using parameterALL, the
current line remains the same, no matter if there has been any expansion or not.

FILE [filename] FIL

This command writes the content of theworkfile in a file. FILE is explained in detail in section 3.1.4,Saving a File.

FILL [string] FILL

This command is filling up records by moving so many words from the following record into the the current record as
may have place in the visible line (value ofLWWIDTH). The same action takes place for the next record and so on.

Filling up always starts with the current line.

Filling stops either before the next blank line or before that record which begins withstring, or at the end of the file.
If you do not specify a parameter then the stop record will be the next blank line.

If you have a text where paragraphs are marked by blank lines or by an unambigious mark at the end of the paragraph
(but at the beginning of a record), you may by this means fill the text paragraph by paragraph. In all cases you should
make sure that the blank lines or the stop strings are present or are typed in the right way. Otherwise the filling up
may unwantedly run too far or even to the end of the file.

HELP [cmd | PREFIX] H

If this command is entered without parameters, the result is a list of all commands, special help texts and prefix
commands displayed in the window. The command words and special help texts in this list are spelled with capital
and small letters. The capital letters at the beginning of a command word denote the minimal abbreviation. For
example,

COpy

denotes that theCOPY command can be entered asCOPY, COP or CO but not asC. The list of the commands is sorted
according to the minimal abbreviations, i.e. not exactly alphabetically with regard to the full command words.

If you specify a command name as parameter of theHELP command, you receive the syntax and meaning of that
command. In the first line of the output, there is the complete command syntax on the left. In the spelling of the
syntax, vertical lines and square brackets have the meaning explained in section 3.2.1,Notation. In the first line on
the right, there is a short characterization of the command in English. The rest of the lines of the output describe the
commands as good as possible within a maximum of five lines. This restriction has been chosen to make it possible
for you to watch the current section of theworkfile and the help text at the same time. Of course, this works only as
long as you do not want to enter a command.

If you specify the parameterPREFIX in addition to the command name, you will get the help text for the according
prefix command. This parameter is necessary for those commands that exist both as a command line command and
as a prefix command, e.g.D or I.

The longer version of the help text is only available in the manual at hand, which is also relevant in cases of doubt.

With the commandHELP you can have some special help texts displayed in the window. Formally, this works in the
same way as the display of help texts of commands but the parameter words are no commands.

• function shows allexaEdit functions, compare section 3.1.30.

• profilex shows information about the profile files.

• symbolic lists all symbolic line numbers allowed (for the commandsCOPY, DL, MOVE, etc.).

3.2. The Commands 89

HEXA HEX

The first time this command is used during aexaEdit session, the display of the current line will change from ASCII
to hexadecimal.

The next timeHEXA is used, the display of the current line will change back to ASCII (i.e. ‘normal’) etc.

The commandHEXA only changes how the data is displayed. For hexadecimal editing the parameterH of the commands
ALIGN, CHANGE, SSPLIT, and those of theLOCATE family is needed.

INDENT [? | n | AUTO | ON | OFF] IND

This command controls the behaviour ofexaEdit during automatic indenting during input mode.

Indenting will be switched on or off withON or OFF. The parametern specifies indenting by n columns. This means
that when typing a new line the cursor will be in column n + 1.

If instead the parameterAUTO holds, then each new line will be indented the same amount as the previous line. The
indenting amount memorised from the previous line byexaEdit will not be disturbed by the input of a blank line.

With INDENT ? the valid parameter values will be shown.

The default is

INDENT AUTO ON

INLENGTH [? | n | AUTO | SOFT | HARD] INL

This commands controls the behaviour ofexaEdit during the automatic line break during input mode. Line break
means that during input in the input a record), you may in this way fill the text paragraph by paragraph. In the fact
how many characters fit into a line (a record). You may find further details in the section 3.1.18.2,Automatic line
break.

Default is breaking of lines during input mode, if they would get longer thanLWWIDTH columns. This is the same as
the specification of the parameterAUTO. Yoe may, however, choose e fixed column by specifying the parametern.

Default is also that the line break occurs at the last blank character before the given or assumed column. You may,
however, request by specifying the parameterHARD, that the line break should occur exactly at the column, that is,
independent of word boundaries.

With INLENGTH ? the valid parameter values will be shown.

The default is

INLENGTH AUTO SOFT

INPUT [/string/] I

This command has two meanings, depending on whether you give parameters or not.

When you useINPUT without parameters, the command switches from the command mode to the input mode. If you
want to switch back from the input mode to the command mode, you have to make an empty input, i.e. press the
return key without having pressed another key except thereturn key.

When you switch on the input mode,

Input

90 Chapter 3. The Editor and Its Commands

is displayed in the window (as an invitation to give some input). This display is overridden with the next input you
give. The permanent display for the input mode is an

I

in the status line. Besides, the ruler slides to the left to make it possible to count the columns correctly if necessary.

You use the input mode to transfer new records into theworkfile. The new records are entered in the dialogue zone
(i.e. where you usually enter theexaEdit commands). These records are inserted after the record in the current line.

Every line entered is repeated in the first line of the dialogue zone, the second line of this zone is erased and the cursor
takes the first position of the second line for the next input. But you can make your input in any line in the window, as
usual inexaEdit. You may apply this possibility especially to the previous line of input that has remained in the first
line of the dialogue zone.

As long asexaEdit is in the input mode, the new lines in the data zone do not yet receive numbers. The line numbers
are only added when the input mode is quit since only then the numbers of new lines is determined. Section 3.1.31,
Inserting Record Numbers, describes how the numbers of new records are determined.

Now for the parameter use ofINPUT: This inserts the string you have specified as a new line after the current line.

INSMODE [? | ON | OFF] INS

This command controls the behaviour ofexaEdit during insert mode, see also the section 3.1.10,Deleting and Insert-
ing of Characters. It allows switching between the ordinary insert mode (INSMODE OFF) and the permanent insert
mode (INSMODE ON). The just mentioned commands may also be replaced by a single or double pressing of theIns
key (which is sometimes not part of the keyboard).

With INSMODE ? you will be shown the state of the switch.

Default is

INSMODE OFF

KEYBOARD [? | EXAEDIT | ALL | TEST] KEYB

This command has two different functions. The first one is useful to change the reaction to the pressing of certain
keys on the keyboard. Besides the keys with normal characters, there are others that are linked to certain functions.
Depending on the hard- or software environment ofexaEdit, these special keys may be allocated with different pieces
of information. For this reason, there are keys that have no meaning forexaEdit. This is not only the present state of
affairs, this situation may continue in the future. The keys with no meaning forexaEdit are simply ignored if they are
hit. This is valid in the default setting

keyboard exaedit

But if

keyboard all

is valid, you cause a message when you hit one of these keys. The message explains the informationexaEdit received
from this key and it says that this information is ignored. However, it may happen that the message for the key disturbs
your normal usage ofexaEdit, for example, if you press one of these keys during your input. This is why the silent
ignoring of these keys is part of the default setting.

With the question mark as parameter you can ask for the current setting ofKEYBOARD. The response is eitherEXAEDIT
or ALL.

The second function of the commandKEYBOARD is the usage with the parameter

TEST

3.2. The Commands 91

If you apply this parameter,exaEdit writes

Press key:

in the window and expects that you press exactly one key. IfexaEdit answers this, the calling ofKEYBOARD TEST is
finished. If there is no reaction ofexaEdit, you have to press thereturn key to receive the appropriate reaction of
exaEdit.

In the section 3.1.29,Keyboard Test, you find a detailed explanation on the interpretation of the messages ofexaEdit.

LANGUAGE [? | DEUTSCH | UDEUTSCH | ENGLISH] LA

With this command you adjust the language, in whichexaEdit provides messages and help texts.

The default setting ofexaEdit for the parameter isUDEUTSCH or ENGLISH, depending on the installed version.
UDEUTSCH means German language and usage of German umlauts and sharp s. If you do not want these special
characters, for example because they look strange or they are not displayed at all, you may switch to the circumscrip-
tionsae, ...,ss by using

language deutsch

Please, note that there may be another default setting in a profile file.

With the parameter? exaEdit displays the current language setting.

LOAD filename LOA

Related command: callingexaEdit

LOAD serves to load a file from the disk into the currentworkfile. The commandLOAD is described in detail in the
section 3.1.3,Loading a File.

LOCATE [col1 [col2]] [/string/ [H] [I]] L

Related commands:RLOCATE, NLOCATE, RNLOCATE/NRLOCATE

LOCATE is used to search for character strings. As parameter you specify a character string. The latter is embedded
in two delimiters. In the general syntax above, a slash (‘/’) is used as delimiter but any other character is possible
as well. In practice, the special character on the lower right on the keyboard has proved to be helpful. When you
get used to this key as general delimiter, you will only have to use another character if the special character occurs in
the character string to search for. You may leave out the delimiter at the end of the character string if the rest of the
command line is empty.

locate /abc/

searches for the character string ‘abc’,

l -a/b-

searches for the character string ‘a/b’,

l abc

searches for the character string ‘bc’ because ‘a’ is the first delimiter and the second delimiter is missing.l abca
would search for the character string ‘bc’ as well.

Please, note that you have to use the final delimiter if you concatenate theLOCATE command with other commands:

l /abc/;-2

92 Chapter 3. The Editor and Its Commands

searches for the string ‘abc’ and then executes the command-2 while

l /abc ;-2

would search for the string ‘abc ;-2’.

The search begins at the record after the one in the current line.

If the character string is found, the record containing the string appears in the current line. The section displayed in
theworkfile is moved according to the change.

Contrasting, if the character string is not found, the following message appears:

Character string not found: ...

In the output in the window the. . . are replaced by the string searched for. In this case, the current line remains
unchanged.

If exaEdit could not find the character string in the last record of theworkfile, normally the search continues at the first
record either until the character string is found or until the initial record of the search is reached. ‘Normally’ means
that the switch manipulated by the commandWRAP is ON.

To show you that the search continued at the beginning of theworkfile, the message

Search from begin (wrap)

is generated. This message is followed by either the positioning of theworkfile section when the character string is
found or the negative message from above when the string is not detected.

Anyway, if WRAP OFF is valid, the search ends at the last record of theworkfile. If the search was not successful, the
messages

End of data
Character string not found: ...

are generated.

Frequently, it is necessary to search for the same character string more than once. In this case, it is sufficient to enter
LOCATE without any parameter: The last character string that has been searched for is used automatically.

The commandsLOCATE, RLOCATE, NLOCATE andRNLOCATE/NRLOCATE use the same character string. The character
string to be searched for is the same for allworkfiles.

By default, the complete record will be searched. By giving two column numbers as first parameters the search is
restricted to that area. A character string will then only be found if the given area contains it fully. If only one column
number is given, the search area goes from that column to the end of the record. The commandZONE can also be used
for column restrictions (see description). When bothZONE and the column number parameters are in effect, the latter
one precedes.

If LOCATE is used a second time, and then without any parameters, possible column restrictions are still in effect. But
if a new search string is given, the restriction are no longer in effect. ALOCATE with a (new) column restriction after
anotherLOCATE will use the same search string as the firstLOCATE.

You can search for data in hexadecimal form by giving the parameter

H

To this end, the given character string must be written in hexadecimal form. Since 1 byte is always defined by
2 hexadecimal characters,exaEdit always demands that the amount of the entered hexadecimal characters is even.
OtherwiseexaEdit will generate the error message

Odd number of hex characters

Entering a character that is not hexadecimal results in the error message

Wrong hex character

3.2. The Commands 93

If, for example, the next record containing a tab sign (hexadecimal09) should be found, the command

locate /09/ h

could be used.

When the parameter

I

(= ‘case–insensitive’) is given, the search for the character string will be case insensitive (i.e. no distinction between
lower and upper case characters). This means that

locate /ab/ i

will find eitherab or Ab or aB or AB.

If you have to use the parameterI regularly, the use of the commandCASE is recommended.CASE can force other
commands to act as if the parameterI was given. For further information seeCASE.

LWWIDTH [n | ?] LW

Related command:SZONE

LWWIDTH (= logical window width) determines the logical window width, i.e. the maximal line width that would be
displayed if the physical window was wide enough. All the records that are longer thanLWWIDTH are presented in
subsequent lines. A record with 200 bytes would take four lines ifLWWIDTH had the value 60. The last line would then
contain the last 20 bytes of the record.

If you want to avoid subsequent lines in your window, you can make the rests of the records disappear on the right by
applyingLWWIDTH properly.

The default setting ofLWWIDTH is chosen in such a way that all the data of theworkfile are visible in the window or
become visible when you leaf through the file. As a consequence, subsequent lines are used if necessary.

The default value ofLWWIDTH depends on the physical window width and the value ofSKEY (see the description of
the commandSKEY):

lwwidth = physical window width− skey − 1

If you change the value ofSKEY, LWWIDTH adjusts to it automatically, so that the entire window width is used: A
window with a physical width of 80 andSKEY = 6 has forLWWIDTH the value 73; withSKEY = 0 the value of
LWWIDTH is 79.

If you enter the commandLWWIDTH without parameters, the default value ofLWWIDTH regarding the current value of
SKEY is adopted. For example, a physical window width of 80 andSKEY = 0 combined with the commandLWWIDTH
alone result in a value of 79.

The parameter ‘?’ displays the current value ofLWWIDTH.

MANUAL [name | ∗] [? | DEFAULT | DELETE | SET /string/] MAN

This exaEdit command serves to create, change, delete, list, and execute Unix or DOS commands to look at the
exaEdit user manual.

With the command

manual * ?

you receive a listing of all definedmanual parameter sets. If it was not changed or deleted in the installation profile
or by yourself, there is at least the parameter set that is included inexaEdit. It is similar to one of the following:

94 Chapter 3. The Editor and Its Commands

MAN 0! start iexplore exaedit.de/dok/en/
MAN 0! konqueror exaedit.de/dok/en/&
MAN 0! netscape exaedit.de/dok/en/

Lines of the first type appear on Windows systems, lines of the second type on Linux systems, lines of the third type
on other Unix systems. The different parts have the following meaning:

MAN is the abbreviation of theexaEdit command word that is output to allow you to change the line and enter it as a
new command.

0 is the name of themanual parameter set. Such a name may consist of one to four letters or digits.

! marks themanual parameter set as default setting, i.e. this set is taken if nomanual name is specified when the
manual command for execution or listing is called.

start iexplore resp.netscape etc. is the name of the DOS resp. Unix command word that should be executed
to display theexaEdit user manual online.

exaedit.de/dok/en/ is the file that the browser commands need for this purpose.

& at the end of the Unix command makes sure thatnetscape works asynchronously toexaEdit.

With the command

manual ?

only themanual parameter set marked with! is displayed.

With the command

manual name ?

only the specifiedmanual parameter set is displayed.

With the command

manual

themanual parameter set marked with! is used and the Unix or DOS command in it is executed.

With the command

manual name

the specifiedmanual parameter set is used and the Unix or DOS command implied in it is executed.

With the command

manual name default

the specifiedmanual parameter set is marked with! and the set that has been labelled with an! so far loses its label.

With the command

manual name delete

the specifiedmanual parameter set is deleted. An* instead ofname deletes allmanual parameter sets.

With the command

manual name set /character string/

a newmanual parameter set is defined. As mentioned above,name has to consist of one to four letters or digits. The
character string has to be a complete Unix or DOS command. Since it is highly probable that it contains slashes,
you have to choose another character as a delimiter for thecharacter string. You may abbreviate the parameters
DELETE andSET as usual. If you wish to define a parameter set which is very similar to an existing one, you can have

3.2. The Commands 95

the existing set displayed withmanual name ? and then alter the display as you like it and seal it by pressing the
return key.

Please, keep in mind that you may organize the changes or supplements of the existingmanual parameter sets into
your privateexaEdit profile file as well.

MOVE num1 [num2] M

The commandMOVE moves one or more records behind the record of the current line of theworkfile. The records to
be moved are referred to by a symbolic number or the line number.

The record number may be specified without leading zeros. Symbolic record numbers resp. line numbers are:

* for the current line.
p (= previous) for the line before the current line.
n (= next) for the line after the current line.
f (= first) for the first line of theworkfile.
l (= last) for the last line of theworkfile.
t (= top) for thetop line of theworkfile.
b (= bottom) for the last line of theworkfile.
s (= set) for the line marked withSET.

If you specify only one number, only this record is moved; if you specify two numbers, the records from the first to
the second number (including the borders) are moved. For this purposenum1 ≤ num2 has to be valid. If that is not the
case, you receive the message

First number larger than second

If you specify a number that does not exist in yourworkfile, you receive the message

Number ... not found

The. . . are replaced by the number in the output.

Besides, you have to take care that the area to be moved does not contain the target; the target is the place between
the current record and the following record. As a consequence, the area to be moved must not contain the current line
and the line following it at the same time. This would be the case in the exampleMOVE ∗ num2 with num2 behind the
current line. If you do not comply to these restrictions, you will receive the message

Target in MOVE area

Some examples:

m400 700 moves the records with the numbers400 to 700 behind the record of the current line.
m b moves the last record.
m p moves the record before the record of the current line behind the record of the current line,

i.e. interchanges the two records.

Please, note that thetop line cannot be moved. The commandMOVE T 500 will result in the message

You cannot move the top line

The records moved receive numbers that go well with the already existing numbers before and after the inserted
records. Since the procedure to determine the new numbers is the same for several commands, it is explained only
once in the section 3.1.31,Inserting Record Numbers.

96 Chapter 3. The Editor and Its Commands

NEXT | + | DOWN [n] N | + | DO

The pointer to the current line is moved downward byn records, in the direction of the end of theworkfile. Since the
current line takes a fixed position in the window, the text slides upward.

If you do not specifyn, the value 1 is assumed.

If n is greater than the number of records after the current line,exaEdit writes

End of data

in the dialogue zone and the current line remains unchanged.

NLOCATE [col1 [col2]] [/string/ [H] [I]] NL

Related commands:RNLOCATE/NRLOCATE, alsoLOCATE andRLOCATE

NLOCATE is used to search for the nearest line not containing the specified character string. As parameter you specify
a character string. The character string normally has to be surrounded by two delimiters. Above, the slash (‘/’) is
used as delimiter but any other character is permissible. In practice, the special character on the lower right of the
keyboard has proved to be effective. You only have to use another character if the character string contains the special
character. You may omit the delimiter at the end of the character string if the rest of the input line is empty.

nlocate /abc/

searches for the nearest line down in the text that does not contain the character string ‘abc’;

nl -a/b-

searches for the nearest line down in the text that does not contain the character string ‘a/b’;

nl abc

searches for the nearest line down in the text that does not contain the character string ‘bc’ because ‘a’ is the delimiter
at the beginning of the character string and the final delimiter is missing. Entering the command linenl abca would
also result in a search for the nearest line not containing the character string ‘bc’.

Please mind the final delimiter when concatenating commands:

nl /abc/;-2

searches the nearest line down in the text that does not contain the character string ‘abc’ and then executes the
command-2 while

nl /abc ;-2

would launch a search for lines not containing the string ‘abc ;-2’.

The search always starts at the record after the one in the current line.

If a line that does not contain the specified character string is detected, that line is put into the current line; the visible
section of theworkfile is moved appropriately.

If exaEdit could not find a line without the character string, the following message is generated:

Character string in all records: ...

for the. . . the character string specified is in the output; the current line remains unchanged.

If exaEdit has found the character string in the last record of theworkfile, the search continues at the first record,
normally. The search goes on until either the character string is not found or the record from which the search
started is reached again, without success. Above, ‘normally’ includes that the switch manipulated byWRAP (compare
explanation at the entry ofWRAP) is turnedON.

To inform you that the search has been continued at the beginning of theworkfile, the message

3.2. The Commands 97

Search from begin (wrap)

is generated. This message is followed either by the positioning of the current line when the string is not found in a
line or by the message of failure mentioned above.

Contrasting, ifWRAP OFF is valid, the search ends at the lastworkfile record. If it was not successful, i.e. the character
string is in every line searched,exaEdit generates the messages

End of data
Character string in all records: ...

Frequently it will be necessary to launch searches for the same character string more than once. Then it is sufficient
to enterNLOCATE without parameters; the last character string that has been searched for is used automatically.

The commandsNLOCATE, RNLOCATE/NRLOCATE, LOCATE andRLOCATE use the same character string. The character
string to be searched for is the same for anyworkfile.

By default, the complete record will be searched. By giving two column numbers as first parameters the search
is restricted to that area. A record will then be found as long as the given area does not contain the search string
completely. If only one column number is given, the search area goes from that column to the end of the record. The
commandZONE can also be used for column restrictions (see description). When bothZONE and the column number
parameters are in effect, the latter one precedes.

If NLOCATE is used a second time, and then without any parameters, possible column restrictions are still in effect.
But if a new search string is given, the restrictions are no longer in effect. ANLOCATE with a (new) column restriction
after anotherNLOCATE will use the same search string as the firstNLOCATE.

You can search data in hexadecimal form by giving the parameter

H

To this end, the given character string must be written in hexadecimal form. Since 1 byte is always defined by
2 hexadecimal characters,exaEdit always demands that the amount of the entered hexadecimal characters is even.
OtherwiseexaEdit will generate the error message

Odd number of hex characters

Entering a character that is not hexadecimal results in the error message

Wrong hex character

If, for example, the next record not containing a tab sign (hexadecimal09) should be found, the command

nlocate /09/ h

could be used.

When the parameter

I

(= ‘case–insensitive’) is given, the search for the character string will be case insensitive (i.e. no distinction between
lower and upper case characters). This means that

nlocate /ab/ i

can find records that contain neitherab norAb noraB norAB.

If you have to use the parameterI regularly, the use of the commandCASE is recommended.CASE can force other
commands to act as if the parameterI was given. For further information seeCASE.

98 Chapter 3. The Editor and Its Commands

NRLOCATE | RNLOCATE [col1 [col2]] [/string/ [H] [I]] NRL | RNL

Related commands:NLOCATE, alsoRLOCATE andLOCATE

NRLOCATE searches backwardly for the nearest line not containing the character string specified (reverse search). As
parameter you specify a character string. The character string has to be put in delimiters, normally. Above, the slash
(‘/’) is used as delimiter; any other character is allowed as well. In practice, the special key on the lower right on your
keyboard has proved to be useful. You only need a different delimiter if the character you have got used to is part of
the character string specified. The delimiter at the end of the character string is omittable if the rest of the command
line remains empty.

nrlocate /abc/

launches a backward search for the nearest line not containing the character string ‘abc’;

nrl -a/b-

launches a backward search for the nearest line not containing the character string ‘a/b’;

nrl abc

launches a reverse search for the nearest line not containing the character string ‘bc’ because ‘a’ is the delimiter at the
beginning and the delimiter at the end is missing.nrl abca would also launch a reverse search for the nearest line
that does not contain the character string ‘bc’.

Please mind the final delimiter when concatenating commands:

nrl /abc/;-2

reversely searches the nearest line that does not contain the string ‘abc’ and then executes the command-2 while

nrl /abc ;-2

backwardly searches the nearest line not containing the string ‘abc ;-2’.

The search starts at the record before the one in the current line.

If the nearest line that does not contain the specified character string is found, that line is positioned into the current
line. The section of theworkfile displayed in the window is moved correspondingly.

If exaEdit cannot find a line not containing the requested string, the message

Character string in all records: ...

appears; the. . . are replaced by the specified character string; the current line remains unchanged.

If exaEdit finds the character string in every record until the first record of theworkfile has been reached, the search
continues at the last record, normally. The search goes on until either the character string is found or the record from
which the search started is reached without success, again. In the sentence above, ‘normally’ means that the switch
manipulated byWRAP (compare the entry forWRAP) is turnedON.

To show that the search has continued at the end of theworkfile, exaEdit generates the message

Search from end (wrap)

This message is followed by either the positioning of theworkfile section on the display or the message of failure
mentioned above.

In contrast, ifWRAP OFF is valid, the search ends at the first record of theworkfile if the character string could not be
identified. If the character string is there in every record that has been checked, these messages appear:

Begin of data
Character string in all records: ...

3.2. The Commands 99

Frequently, it will be necessary to search for the same character string several times. Then it is enough to enter the
commandNRLOCATE without parameters; the last character string that has been searched for is used automatically.

The commandsNRLOCATE, RNLOCATE, NLOCATE, LOCATE andRLOCATE use the same character string. The character
string is the same for anyworkfile.

By default, the complete record will be searched. By giving two column numbers as first parameters the search is
restricted to that area. A record will then be found if the given character string is not or not completely contained
within the area. If only one column number is given, the search area goes from that column to the end of the record.
The commandZONE can also be used for column restrictions (see description). When bothZONE and the column
number parameters are in effect, the latter one precedes.

If NRLOCATE is used a second time, and then without any parameters, possible column restrictions are still in effect.
But if a new search string is given, the restrictions are no longer in effect. ANRLOCATE with a (new) column restriction
after anotherNRLOCATE will use the same search string as the firstNRLOCATE.

You can search in hexadecimal form by giving the parameter

H

To this end, the given character string must be written in hexadecimal form. Since 1 byte is always defined by
2 hexadecimal characters,exaEdit always demands that the amount of the entered hexadecimal characters is even.
OtherwiseexaEdit will generate the error message

Odd number of hex characters

Entering a character that is not hexadecimal results in the error message

Wrong hex character

If, for example, the nearest previous record not containing a tab sign (hexadecimal09) should be found, the command

nrlocate /09/ h

could be used.

When the parameter

I

(= ‘case–insensitive’) is given, the search for the character string will be case insensitive (i.e. no distinction between
lower and upper case characters). This means that

nrlocate /ab/ i

will find the nearest previous record containing neitherab norAb noraB norAB.

If you have to use the parameterI regularly, the use of the commandCASE is recommended.CASE can force other
commands to act as if the parameterI was given. For further information seeCASE.

PFK [n | ALL] [? | LOCK | UNLOCK | SET /string/] PF

PFK abbreviatesprogram function key, i.e. keys that call program functions (in opposition to functions of the operating
system). The keys concerned usually are labelled withF1, F2, etc. Therefore the keys are referred to asF keys. In
section 3.1.23,Programmable Function Keys, there is detailed explanation on the sense and usage of the allocation of
commands orexaEdit functions onF keys.

PFK basically has two parameters. The first one specifies theF key concerned and the second parameter specifies the
function (to show, lock, unlock, allocate).

The first parameter is either the number of theF key or it isALL if everyF key is referred to. If you leave out the first
parameter in combination with the function ‘show’,ALL F keys is assumed; if you omit the first parameter together

100 Chapter 3. The Editor and Its Commands

with one of the other functions, noF key is adopted. In other words, the first parameter is necessary together with the
functionsLOCK, UNLOCK andSET.

Instead of the single specificationn, you may also specify a rangen-m or n:m, or a list of numbers and ranges, e. g.3
4-7 9.

If you leave out the second parameter,exaEdit adopts the function to ‘show’. As a consequence, the commands

pfk all ? pfk all pfk ? pfk

are identical, as well aspfk n ? andpfk n, etc.

With the parameterLOCK you lock the specifiedF key(s), i.e. that you cannot allocate it (or them) by simply entering
characters and pressing theF key afterwards.F keys that have been defined with the commandSET are locked
automatically.

With the parameterUNLOCK you remove the lock of the specifiedF key(s).

With the parameterSET /string/ you allocate the specifiedF key(s) with thestring. The delimiters ofstring are
arbitrary, as usual, the final delimiter is optional.

pfk 5 set qwho

allocates ‘who’ on theF keyF5.

Please, note that the apostrophes at the beginning and at the end belong to theexaEdit functions. In the following
definitions, onlyF4 results in theexaEdit functiondel while the two at the beginning,F1 andF2, result in theexaEdit
commanddelete, andF3 does not make sense.

pfk 1 set /del/
pfk 2 set ′del′

pfk 3 set /′del
pfk 4 set /′del′

POINT num PO

Related commands: number command,+, -, NEXT, BACK, UP, DOWN, TOP, BOTTOM, RETURN

The commandPOINT places the record with the number specified into the current line, theworkfile section in the
window is moved accordingly.

The record number may be specified without leading zeros.

Symbolic record numbers are allowed (compare the explanation at the entries of the commandsCOPY, DELETEL and
MOVE) but the direct positioning commands will be preferable, e. g.TOP instead ofPOINT T.

If you specify a number that does not exist, you receive the message

Number ... not found

PROFILE [? | EXEC [ALL] | LIST [ALL] | LOAD [ALL]] PRO

Without parameters or with ‘?’, the commandPROFILE shows the profile files thatexaEdit has searched for and used
when starting. You can find details about this in section 3.1.26,The Profile Files.

The remaining parameters serve to

• execute again (EXEC),

• display in window (LIST), or

3.2. The Commands 101

• load into the current workfiles (LOAD)

the commands of the profile files in use.

In each case, the parameterALL specifies whether the command refers to all commands in the profile file or only to
those that are executed when a newworkfile is started (and which are therefore marked with an exclamation mark in
column 1).

QUIT | END Q | E

The commandQUIT leaves the editor. Before that action happens, it is checked whether you made changes in your
workfiles and have not saved them yet. If that is the case, you are informed on it and you have the chance to continue
theexaEdit session, for example to save your changedworkfiles onto the data medium.

If there is only theworkfile MAIN in your exaEdit session, you get the message

Changes not saved
Press J or Y to stop:

In line mode, the second line is:

Enter J or Y to stop:

If there are some otherworkfiles as well, the first line of the message reads as follows, instead:

Workfiles not saved: ...

In the window, the. . . are replaced by the names of theworkfiles.

If you decide not to save the changes, you simply press the key ‘j’ or ‘ y’ (small or capital letters) and the editor
immediately finishes its work. In opposition to this, if you hit any other key, the execution of the commandQUIT is
aborted and you can go on editing as usual.

Please note, that for answering this question it is sufficient to simply hit one key; it is not necessary to press the
return key.

REKEY [base [incr]] | ON | OFF | ? REK

The commandREKEY restores the equidistant numbering in the number area of theworkfile.

The default setting isREKEY 100 100, resulting in the values used when a file is loaded into theworkfile.

As initial valuebase you can choose a not negative digit (0, 1, 2, 3, . . .); as value for the differenceincr you choose
a positive digit (1, 2, 3, . . .). A difference value0 produces the message

Number 0 not allowed

If the line numbers would become larger than99999999, the commandREKEY is rejected with the message

REKEY produces too large number

If you enter the commandREKEY without parameters, the values that were last used are taken.

The parametersON andOFF are checked and displayed but they have no meaning at present.

With the parameter? you askexaEdit to show the currentREKEY values in the window.

102 Chapter 3. The Editor and Its Commands

REPLACE col1 [col2]/string/ [n] R

Related commands:CHANGE, CONCAT

With the commandREPLACE you insert a character string in the line(s) specified. Contrasting toCHANGE, the content
of the character string to be replaced is irrelevant.

REPLACE substitutes a character string in the record of the current line or inn records starting at the current line.

You always have to specify the column, at which the character string has to be inserted. You manipulate the behaviour
of REPLACE by specifying or omitting the second column as follows:

If you do not specify the end column, as many characters are inserted as thestring is long. Characters that might be
behind the inserted characters remain untouched.

If you specify the begin and the end column,REPLACE behaves asCHANGE with arbitrary content of the columns to be
replaced. In other words, the character string that is limited by initial and final column is cut out of the line and the
newstring is inserted; the original content beyond the final column is moved to the left or to the right, so that it is
adjacent to the new characters.

Examples: The current line contains the text

The weather has been fine.

The two commands

replace 13/had/
r22 25/foggy

give the following results:

The weather had been fine.
The weather had been foggy.

RETURN RET

Related commands:POINT, number command

The commandRETURN positions the record marked by theSET command (compare the entry forSET) into the current
line. Theworkfile section on the display is moved according to the change.

If there has not been aSET command before theRETURN command, you receive the message

SET storage unused

and the current line does not change.

If the record marked bySET does not exist any more, this message appears:

SET storage changed, return to previous record

and the previous record is moved into the current line.

It is not possible to jump from oneworkfile to another withRETURN because everyworkfile has its ownSET storage.

3.2. The Commands 103

RLOCATE [col1 [col2]] [/string/ [H] [I]] RL

Related commands:LOCATE, alsoNLOCATE andRNLOCATE/NRLOCATE

This command serves to search for character strings backwardly. As parameter you specify a character string that has
to be surrounded by delimiters, normally. Above, the slash (‘/’) is used as delimiter; any other character is allowed.
In practice, the special key on the lower left of the keyboard has proved helpful. You only use another one if this
character occurs in the character string to be searched for. You may omit the delimiter at the end of the string if the
rest of the command line remains empty.

rlocate /abc/

launches a backwards search for the character string ‘abc’,

rl -a/b-

launches a backwards search for the character string ‘a/b’,

rl abc

launches a backwards search for the character string ‘bc’ because ‘a’ is the initial delimiter and the final delimiter is
missing.rl abca would do a reverse search for the character string ‘bc’, too.

It is important to note that the final delimiter is essential if you concatenate commands:

rl /abc/;-2

does a reverse search for the string ‘abc’ and executes the command-2 while

rl /abc ;-2

would search for the string ‘abc ;-2’ backwardly.

The reverse search starts at the record before the one in the current line.

If the character string is found, the record containing it appears in the current line; theworkfile section displayed is
moved accordingly.

If the character string is not found, the following message appears:

Character string not found: ...

The. . . are replaced by the search string and the current line remains unchanged.

If exaEdit could not find the character string until the first record of theworkfile has been reached, the reverse search
continues at the last record of theworkfile, normally. The reverse search goes on until either the character string is
found or the starting record of the reverse search is reached, again. The word ‘normally’ above means that the switch
manipulated by the commandWRAP (compare the entry there) has to be turnedON.

To show that the reverse search has been continued at the end of theworkfile, you receive the following message in
the window:

Search from end (wrap)

This message either is followed by the positioning of theworkfile section on the display when the character string is
found or it is followed by the message of failure when the character string could not be found.

Contrasting, ifWRAP OFF is valid, the reverse search ends at the firstworkfile record, latest. If the reverse search was
not successful, the messages

Begin of data
Character string not found: ...

are generated.

104 Chapter 3. The Editor and Its Commands

Frequently, it is necessary to search for the same character string for several times. In this case, it is sufficient to enter
RLOCATE without any parameter: The last character string is used automatically.

The commandsRLOCATE, LOCATE, NLOCATE andRNLOCATE/NRLOCATE use the same character string.

By default, the complete record will be searched backwardly. By giving two column numbers as first parameters the
search is restricted to that area. A character string will then only be found if the given area contains it fully. If only
one column number is given, the search area goes from that column to the end of the record. The commandZONE
can also be used for column restrictions (see description). When bothZONE and the column number parameters are in
effect, the latter one precedes.

If RLOCATE is used a second time, and then without any parameters, possible column restrictions are still in effect.
But if a new search string is given, the restrictions are no longer in effect. ARLOCATE with a (new) column restriction
after anotherRLOCATE will use the same search string as the firstRLOCATE.

A hexadecimal reverse search can be done by giving the parameter

H

To this end, the given character string must be written in hexadecimal form. Since 1 byte is always defined by
2 hexadecimal characters,exaEdit always demands that the amount of the entered hexadecimal characters is even.
OtherwiseexaEdit will generate the error message

Odd number of hex characters

Entering a character that is not hexadecimal results in the error message

Wrong hex character

If, for example, the next record containing a tab sign (hexadecimal09) should be found, the command

locate /09/ h

could be used.

When the parameter

I

(= ‘case–insensitive’) is given, the search for the character string will be case insensitive (i.e. no distinction between
lower and upper case characters). This means that

rlocate /ab/ i

will find eitherab or Ab or aB or AB.

If you have to use the parameterI regularly, the use of the commandCASE is recommended.CASE can force other
commands to act as if the parameterI was given. For further information seeCASE.

RNLOCATE | NRLOCATE [col1 [col2]] [/string/ [H] [I]] RNL | RNL

Related commands:NLOCATE, alsoRLOCATE andLOCATE

RNLOCATE conducts a reverse search for the nearest line not containing the character string specified. As parameter
you specify a character string. The character string has to be put in delimiters, normally. Above, the slash (‘/’) is used
as delimiter; any other character is allowed as well. In practice, the special key on the lower right on your keyboard
has proved to be useful. You only need a different delimiter if the character you have got used to is part of the character
string specified. The delimiter at the end of the character string is omittable if the rest of the command line remains
empty.

rnlocate /abc/

launches a backward search for the nearest line not containing the character string ‘abc’;

3.2. The Commands 105

rnl -a/b-

launches a backward search for the nearest line not containing the character string ‘a/b’;

rnl abc

launches a reverse search for the nearest line not containing the character string ‘bc’ because ‘a’ is the delimiter at the
beginning and the delimiter at the end is missing.rnl abca would also launch a reverse search for the nearest line
that does not contain the character string ‘bc’.

Please mind the final delimiter when concatenating commands:

rnl /abc/;-2

reversely searches the nearest line that does not contain the string ‘abc’ and then executes the command-2 while

rnl /abc ;-2

backwardly searches the nearest line not containing the string ‘abc ;-2’.

The search starts at the record before the one in the current line.

If the nearest line that does not contain the specified character string is found, that line is positioned into the current
line. The section of theworkfile displayed in the window is moved correspondingly.

If exaEdit cannot find a line not containing the requested string, the message

Character string in all records: ...

appears; the. . . are replaced by the specified character string; the current line remains unchanged.

If exaEdit finds the character string in every record until the first record of theworkfile has been reached, the search
continues at the last record, normally. The search goes on until either the character string is found or the record from
which the search started is reached without success, again. In the sentence above, ‘normally’ means that the switch
manipulated byWRAP (compare the entry forWRAP) is turnedON.

To show that the search has continued at the end of theworkfile, exaEdit generates the message

Search from end (wrap)

This message is followed by either the positioning of theworkfile section on the display or the message of failure
mentioned above.

In contrast, ifWRAP OFF is valid, the search ends at the first record of theworkfile if the character string could not be
identified. If the character string is there in every record that has been checked, these messages appear:

Begin of data
Character string in all records: ...

Frequently, it will be necessary to search for the same character string several times. Then it is enough to enter the
commandRNLOCATE without parameters; the last character string that has been searched for is used automatically.

The commandsNRLOCATE, RNLOCATE, NLOCATE, LOCATE andRLOCATE use the same character string. The character
string is the same for anyworkfile.

By default, the complete record will be searched. By giving two column numbers as first parameters the search is
restricted to that area. A record will then be found if the given character string is not or not completely contained
within the area. If only one column number is given, the search area goes from that column to the end of the record.
The commandZONE can also be used for column restrictions (see description). When bothZONE and the column
number parameters are in effect, the latter one precedes.

If RNLOCATE is used a second time, and then without any parameters, possible column restrictions are still in effect.
But if a new search string is given, the restrictions are no longer in effect. ARNLOCATE with a (new) column restriction
after anotherRNLOCATE will use the same search string as the firstRNLOCATE.

You can search in hexadecimal form by giving the parameter

106 Chapter 3. The Editor and Its Commands

H

To this end, the given character string must be written in hexadecimal form. Since 1 byte is always defined by
2 hexadecimal characters,exaEdit always demands that the amount of the entered hexadecimal characters is even.
OtherwiseexaEdit will generate the error message

Odd number of hex characters

Entering a character that is not hexadecimal results in the error message

Wrong hex character

If, for example, the nearest previous record not containing a tab sign (hexadecimal09) should be found, the command

rnlocate /09/ h

could be used.

When the parameter

I

(= ‘case–insensitive’) is given, the search for the character string will be case insensitive (i.e. no distinction between
lower and upper case characters). This means that

rnlocate /ab/ i

will find the nearest previous record containing neitherab norAb noraB norAB.

If you have to use the parameterI regularly, the use of the commandCASE is recommended.CASE can force other
commands to act as if the parameterI was given. For further information seeCASE.

SCOPE [? | ON | OFF] SC

You can use this command to switch between window mode (default) or line mode (see section 3.1.20,The Line
Mode).

SCOPE ? shows the setting of this switch.

SCOPE without further specifications meansSCOPE ON.

SEQUENCE [col1 [col2]] / base [incr]] / n [N | R] [F] SE

This command inserts numbers in specified columns ofn consecutive lines.

The default setting begins the numbering with 1 and increases it by 1 in each step. If, for example, you want to fill 5
lines with the numbers 1 to 5, you enter the command

sequence /1 1/ 5

Taking into account the default values, you could also write

sequence //5

You can, of course, choose different values for the base number and for the stepping size.

The numbers are written right-justified. As long as not specified differently, the needed column width is defined by
the largest number that will be inserted and the field begins in column 1. By specifying the parametercol1 you can
determine the starting column for the inserted numbers. If you specifycol2 additionally, you determine the column
width. By specifyingF (fill), you demand that the columns of the inserted field are filled with zeros to the left. An
example:

se5 7/8/3f

3.2. The Commands 107

results in the following content for the columns 5 to 7:

008
009
010

The last remaining default to be described isN (new): After the current line,n new lines with the desired numbers
are inserted. If you specify the parameterR (replace) instead, the respective columns (with the column width just as
described above) in the nextn lines, including the current line, are overwritten with the desired numbers. If there are
not enough lines for this in theworkfile, you get the message

End of data

The largest of the newly created numbers has to fit in the field width and may not exceed 8 digits. If this is violated,
you get the message

SEQUENCE exceeds 99999999 or field width

SET [?] SET

If you enterSET without parameter, the number of the record in the current line is internally stored.

With the commandRETURN you can go back to the record stored.

The specification of the parameter ‘?’ effects that the record stored before is displayed in the dialogue zone. A leap
to the record does not happen, then. You may use this parameter to find out where aRETURN command would lead to.

If the marked record does not exist any more, you receive the message:

SET storage changed, return to previous record

and the record previous to the one in theSET storage of the currentworkfile is displayed.

After having marked a record with theSET command, you can refer to that record using the symbolic line number

s

This works with all commands that use symbolic line numbers, e.g.COPY, COUNT, DL, MOVE, POINT, SORT, etc.

SKEY [? | n] SK

The command ‘SKEY n’ determines that the number area on the window should be n digits wide. The default setting
is 6, the minimum is 0, the maximum is 8.

With ‘SKEY ?’ you receive the value of the currentSKEY setting.

‘SKEY’ is equivalent to ‘SKEY 6’.

Please, note that a change of theSKEY value (also a change to the same value) causes a change of theLWWIDTH value
(compare the entry forLWWIDTH).

108 Chapter 3. The Editor and Its Commands

SORT [(line1 line2)] [[A | D] [I] [N] where, [A | D] [I] [N] where,...] SORT

With the commandSORT you can sort records. You cannot abbreviate this command, thus you cannot type it by
mistake; normally, this would be irreparable.

If the specification(line1 line2) is missing, the entireworkfile is sorted. With the specification of(line1
line2) you can restrict the sorting to a part of the records. The numbers may be record numbers with or without
leading zeros, or the specification may be of a symbolic line number as described at the entry of the commandCOPY.
The first number must not be larger than the second.

Examples:

sort (500 b) ... sorts the lines500 to the end of theworkfile
sort (f n) ... sorts the lines from the first line to the line after the current line

Additionally, you may specify the orientation, type, and fields of the sorting. If you omit all further parameters, the
records will be sorted in ascending, case-sensitive and alphabetical order (including numbers). Also the complete
records will be used for comparison.

The orientation of the sort is specified byA (= ascending) for ascending sort andD (= descending) for descending
sort. The orientation may be specified for every field separately. If you leave out the specification,exaEdit assumesA
(ascending).

To turn off the case sensitivity you have to use the parameterI (case insensitive). This too has to be given for each
sorting field where this is wanted.

If the fields that are to be sorted contain numbers, you have to use the parameterN (numerical) for each sorting field
where this is required. When sorting numerically, the record or the given sorting field is interpreted as a number.
The functionatoi of the programming language C is used for this. This means the interpretation ends when the first
character that is not a number is reached (this may be before the end of the record or the sorting field is reached).
Additionally, this means the number being interpreted as 0 if no number has been found, an undefined interpretation if
the number found was too large, the acceptance of white spaces (i.e. spaces, tabs, line feeds, page feeds, end of record
characters) and the possibility of writing numbers using decimal points or not and using exponential format or not.

For the specification of the sorting fields (i.e. thewhere in theSORT syntax above) there are two possibilities:

initial-column length

or

initial-column : final-column

The two methods may be mixed. The parameters explained above (A, D, I andN) can be specified ahead of each
sorting field. If you want the same parameters in effect for multiple sorting fields then put these fields in parentheses
and specify the parameters just once ahead of those parentheses.

Finally, you may put one of the characters comma, semicolon, or slash between the field specifications in order to
make them easier to read.

Some examples:

sort d
sort 16:18, 24:26
sort 1 5, d 6 5
sort(300b)16 8
sort d(1 3 4:10
sort n(1 5/6:10) d 11:15 / 16 5

The last example shows the use of 4 sorting fields, all of which are 5 characters in length. The first two fields are sorted
numerically, the last two alphabetically. Only the third field is sorted descendingly, all others are sorted ascendingly.

If exaEdit has sorted successfully, you receive the message:

Sorted

3.2. The Commands 109

Contrasting, if an error occurred, you get one of the following messages:

First number larger than second

In this case, in the parentheses with the line number specification, the value of the first numerical or symbolic line
number is larger than the second.

Number ... not found

You specified the number of a line that does not exist.

There is no previous record

You used the symbolic line numberp although there are no records previous to the record in the current line.

There is no next record

You used the symbolic line numbern although there are no records behind the record in the current line.

You cannot sort the top line

You included thetop line in the records to sort but it cannot be sorted.

Begin column larger than end column

You specified a sorting field with the property mentioned.

Sort fields overlap

There is at least one column that occurs in two field specifications.

SSPLIT [col1 [col2]] [/string/ [E] [H] [I]] SS

With the commandSSPLIT (= ‘string split’) you can divide the record of the current line in two records. The easiest
application is the specification of a character string where the record is split. In such a case, the line is always split at
the beginning of the character string specified. For example, if the current line has the following content

and the dog watched the cat

the command

ssplit -the-

makes the following two lines out of the initial one:

and
the dog watched the cat

If you want to split the line above at the second ‘the’ in the text, you can enter

ssplit 21 -the-

which means, you restrict the area where the character string is searched.

ssplit col1 col2 ...

only searches the columnscol1 to col2 for the characters to split at.

ssplit col1 ...

searches the columns starting atcol1 for the characters.

If you enter anE after the character string, the dividing of the line does not happen at the beginning of the character
string but at the end of the string.

110 Chapter 3. The Editor and Its Commands

ss-the-e

results in the two lines

and the
dog watched the cat

You do not necessarily need to specify a character string to split at. You may also specify a column to divide a record:

ss 5

provides the result

and t
he dog watched the cat

The latter method is also useful to create an empty line before or after the current line:

ss1 or ss

results in an empty record before the current line.

ss n

with a columnn specified generates an empty line after the current line. The columnn must be situated beyond the
last character that is no space. For the example above, you may enter

ss33

The parameter

H

(= ‘hexadecimal’) allows you to enter the character string in hexadecimal form. Since 1 byte is always defined by
2 hexadecimal characters,exaEdit always demands that the amount of the entered hexadecimal characters is even.
OtherwiseexaEdit will generate the error message

Odd number of hex characters

Entering a character that is not hexadecimal results in the error message

Wrong hex character

If, for example, you would want to split a record at a tab sign (in hexadecimal form 09) that occurs somewhere in the
record, you would enter

ssplit /09/ h

When the parameter

I

(= ‘case–insensitive’) is given, the search for the character string, where the record is to be split, will be case insensi-
tive (i.e. no distinction between lower and upper case characters). This means that

ssplit /ab/ i

will split the record after eitherab or Ab or aB or AB.

If you have to use the parameterI regularly, the use of the commandCASE is recommended.CASE can force other
commands to act as if the parameterI was given. For further information seeCASE.

3.2. The Commands 111

TEST [NO] LOG[n] | [NO] DUMP | [NO] KEEP | SHOW | EXAMINE | REPAIR | [NO] MON TE

The commandTEST serves to obtain some information when debugging the editor. It is never needed when editing.

You will only use this command if the author ofexaEdit will ask you to do so.

TOP T

The pointer to the current line is set to thetop line. Since the current line has a fixed position in the window, the text
slides down accordingly.

TRANSLAT [(col1 [col2])] [U | L | ?] [n | ALL] TR

This command (please note: just like with all otherexaEdit commands, the maximal length of this command is 8
letters. This means there is noE at the end of it.) translates lower case in upper case letters (parameterU) and upper
case in lower case letters (parameterL). In this context, ‘letters’ means the 26 letters of the common alphabet (i.e. no
German umlauts).

If neitherU norL is given,TRANSLAT will do the same as it has done in the preceding call during the currentexaEdit
session. When startingexaEdit, the behaviour ofTRANSLAT is switched toU. The status of the switch can be queried
by using the parameter?, after which no other parameters may be given. The possible messagesexaEdit returns are:

Translation to upper case
Translation to lower case

If no further parameters are given, all letters that can be translated will be translated.

If a numbern is given as last parameter,n lines will be translated, beginning with the current line. If there are fewer
thann lines left in the file, the usual message

End of data

will be generated. If the last given parameter isALL, which can also be abbreviated, then all lines of theworkfile will
be translated, independent of the current line. In this case, the line pointer will stay on the current line, but if a number
n was given, it will change to the last line that was edited.

All columns of the line to be changed will be translated if no other specification is given. By giving the first and
the last column in parentheses as first parameter, the columns can be limited. If you give only one number within
the parentheses, the translation will take place from this column to the end of the line. Another way of limiting the
translation area is using the commandZONE (see command description). As usual, if bothZONE and a restriction in
theTRANSLAT command are active, the latter one prevails.

UP | - | BACK [n] U | - | BA

The pointer to the current line is moved upward byn records; in the direction of the top of theworkfile. Since the
current line has a fixed position in the window, the text slides down correspondingly.

If you do not specifyn, the value 1 is assumed.

If n is larger than the number ofworkfile records (including thetop line), exaEdit writes

Begin of data

in the dialogue zone and the current line remains unchanged.

112 Chapter 3. The Editor and Its Commands

WF [wfname | ∗ [DELETE]] | [? [All]] WF

WF is an abbreviation of the commandWORKFILE.

With the commandWF you may createworkfiles, activate them, list or deleteworkfiles. A workfile name consists of
one to eight letters or digits and it has to start with a letter.

The command

WF wfname

generates aworkfile namedwfname, if that workfile does not already exist. Otherwise theworkfile wfname is activated
by entering the command above. The activeworkfile is the one that is displayed in the window and that the editing
commands have effect on.

With the command

WF wfname DELETE

theworkfile wfname is deleted and theworkfile MAIN becomes the activeworkfile. You may abbreviateDELETE with D.
If you want to delete the activeworkfile (that must not be theworkfile MAIN), you should enterWF ∗ DELETE.

With the command

WF ?

the name of the activeworkfile is listed.

With the command

WF ? ALL

the names of allworkfiles areas listed. You can abbreviateALL with A.

WIDTH [? | n | V] WIDTH

With the commandWIDTH you can define how the data in the file to edit should be divided in editor lines. This
command cannot be abbreviated.

The default setting ofWIDTH is the valueV (= variable); that means that the editor lines correspond to the file records
1:1. In the file, records are separated by a special character. This character is the so-callednewline character (\n,
X‘0A’). When carrying out the commandLOAD, thenewline characters are not taken into theworkfile if WIDTH V is
valid, which is supposed to be normal. When the commandFILE is executed, thenewline characters are added to
every record of theworkfile.

However, if you specifiedWIDTH n, the file to be read is split up into pieces of equal length, the length beingn. Each
of these pieces forms one record in theworkfile. Thenewline characters in the file are read as normal data characters.
When you write back onto the disk, the pieces from theworkfile are aligned without the addition of other characters.

WORKFILE [wfname | ∗ [DELETE]] | [? [All]] WF

With the commandWORKFILE you may createworkfiles, activate them, list or deleteworkfiles. A workfile name consists
of one to eight letters or digits and it has to start with a letter.

The command

WORKFILE wfname

generates aworkfile namedwfname, if that workfile does not already exist. Otherwise theworkfile wfname is activated
by entering the command above. The activeworkfile is the one that is displayed in the window and that the editing
commands have effect on.

3.2. The Commands 113

With the command

WORKFILE wfname DELETE

theworkfile wfname is deleted and theworkfile MAIN becomes the activeworkfile. You may abbreviateDELETE with D.
If you want to delete the activeworkfile (that must not be theworkfile MAIN), you should enterWORKFILE ∗ DELETE.

With the command

WORKFILE ?

the name of the activeworkfile is listed.

With the command

WORKFILE ? ALL

the names of allworkfiles areas listed. You can abbreviateALL with A.

WRAP [? | ON | OFF] WR

The commandWRAP influences the behaviour of the commandLOCATE and its related commands (i.e.RLOCATE etc.).

If WRAP OFF is valid, the search for character strings ends at the last or the first record of theworkfile when the search
string is not found.

On the other hand, ifWRAP ON is valid, which is the default setting, either the search continues at the beginning of
the file when the last record is reached or the search is continued at the end of theworkfile when the first record is
reached in reverse search.

With ‘WRAP ?’ you can ask for the current setting of theWRAP switch.

X [? | n | string] X

Related command:Y

With the commandX you can define an abbreviation for any desired sequence of commands and have them executed
in a row.

With the command

X string

you defineX as abbreviation of ‘string’; ‘ string’ has to consist of a valid command line (with one or more com-
mands).

With the command

X n

you askexaEdit to executeX n times.X alone executes the commands once. If you want to executeX without having
it defined, the error message

X is not defined

occurs.

In ‘string’ any command exceptX is allowed. The commandY is only allowed if it does not callX. In this case, the
execution will be terminated at the appropriate point, generating the message:

Cancelled at recursive X

Example:

114 Chapter 3. The Editor and Its Commands

x n2;c/A/B/

For example, you might want to replaceA with B in every second line. To do so, you have to call the commandsn2
andc/A/B/ repeatedly. Instead of repeating the commands, you put them, combined, inX. Then you call ‘x 100’,
which executes the content ofX 100 times. As soon as one of the commands contained inX terminates with a warning
or an error message (End of data, String not found, etc.), the execution ofX will be terminated.

With the command

X ?

you askexaEdit to write the current definition ofX in the window. You may use this command, for example, to change
the content ofX slightly. You move the cursor to the output line, make your changes and redefineX by pressing the
return key.

Y [? | n | string] Y

Related command:X

With the commandY you can define an abbreviation for any desired sequence of commands and have them executed
in a row.

With the command

Y string

you defineY as abbreviation of ‘string’; ‘ string’ has to consist of a valid command line (with one or more com-
mands).

With the command

Y n

you askexaEdit to executeY n times.Y alone executes the commands once. If you want to executeY without having
it defined, the error message

Y is not defined

occurs.

In ‘string’ any command exceptY is allowed. The commandX is only allowed if it does not callY. In this case, the
execution will be terminated at the appropriate point, generating the message:

Cancelled at recursive Y

Example:

y n2;c/A/B/

For example, you might want to replaceA with B in every second line. To do so, you have to call the commandsn2
andc/A/B/ repeatedly. Instead of repeating the commands, you put them, combined, inY. Then you call ‘y 100’,
which executes the content ofY 100 times. As soon as one of the commands contained inY terminates with a warning
or an error message (End of data, String not found, etc.), the execution ofY will be terminated.

With the command

Y ?

you askexaEdit to write the current definition ofY in the window. You may use this command, for example, to change
the content ofY slightly. You move the cursor to the output line, make your changes and redefineY by pressing the
return key.

3.3. The Prefix Commands 115

ZONE [? | n [m]] Z

There are commands, the result of which depends on the location of a certain character string within the line that has
to be worked on. To make the use of the commandZONE easier to understand, we will have a look at the command
SSPLIT, at first.

ssplit /abc/

means, as you know, that the current line should be split in two parts at the beginning of the character string ‘abc’.
Sometimes you might want that this only happens if ‘abc’ occurs in column 10 but not if the string comes before
column 10. The commandSSPLIT offers the option to specify the desired area directly, but in some cases it might be
more appropriate to restrict both the commandSSPLIT and similar commands to a certain column area. The command
ZONE provides this option.

Specifying one column in theZONE command, you restrict the operating area in such a way that it starts at the column
specified and extends to the end of the record.

By specifying two columns you define the beginning and the end of the operation area within the record.

ZONE ? shows the current setting.

ZONE without parameter restores the default setting without any restriction.

The working area set byZONE affects the commandsCHANGE, theLOCATE family, SSPLIT, andTRANSLAT.

3.3 The Prefix Commands

Prefix commands are extremely abbreviated commands which are entered in the number prefix of the line of the
workfile they refer to, not in the dialogue zone ofexaEdit.

For example, if you position the cursor in the number area of aworkfile, enter the character" there and then press
enter, the respective prefix command is executed and doubles the line thus marked.

You can enter any desired prefix command in multiple number areas in the part of theworkfile that is currently shown.
They will all be executed consecutively (in top-down order).

Additionally, before pressing enter, you can enter a normalexaEdit command in the dialogue zone. When you press
enter, first the prefix commands and then the command in the dialogue zone will be executed.

At the moment, there are the following prefix command (additions are in planning):

" This prefix command doubles the marked line.

i This prefix command inserts an empty line after the marked line.

d This prefix command deletes the line marked. To delete several lines, you can mark as many lines as you
desire withd and delete them all with pressing enter once.

If the lines to be deleted are consecutive ones, you can delete all of them at once with a special form of
this prefix command:

dn

Here,n lines starting with the one you marked, are deleted. Betweend and the number no spaces are
allowed.

Since there are digits in the number area, you have to consider this: If you enter e.g.d3without modifying
another column of the number area,exaEdit recognizes the commandd3 no matter if there are any digits
after the number 3. However, if you have modified any other columns (no matter if you restored the
original content or not), there might be misunderstandings betweenexaEdit and yourself about how
many lines there are to be deleted. To be on the safe side, you should enter the desired number of lines
at the right end of the number area, or follow the number with a space.

116 Chapter 3. The Editor and Its Commands

dd This prefix command comes as a pair. With the following Enter all records from the first to the second
dd will be deleted, the marked records included. If you have marked only one record withdd, then this
mark will be ignored.

It is also possible to enter several pairs ofdd prefix commands and let them be executed with one Enter.
If the number ofdd marks is odd then the lastdd will be ignored as well.

With the commandMARK you can see where a singledd is or you can delete it (only the mark, the record
will be kept).

Chapter 4

exaEdit Synopsis

In this chapter, functions for editing are listed in alphabetical order. For each entry there is an explanation of the
methods to perform the function.

Please note the different font faces in the following text.

Commands are written in equidistant font with capital and small letters. The capital letters of a command word mark
its minimal abbreviation. Of course, you may enter the commands in either small or capital letters, as you like.

Italic (equidistant) font is used for parts of a command (name, numbers character strings etc.). You have to replace
these parts with your own characters.

Square brackets [] enclose optional specifications; you decide whether you use or omit them.

Browsing

• Keys page↑ and page↓ browse 1 page.
• Keys F7 and F8 browse 1 page.
• Keys F10 and F11 browse 1/2 page.

Changing the command separator

• CommandCMDsep.

Changing the display

• CommandHEXa to show current line in hexadecimal form.
• CommandCODepage (with parameters) for German special characters in Windows operating systems.
• CommandLWwidth n for manipulating the line break of long records.
• CommandSKey n to set the width of the number area.
• CommandSCope OFF|ON to switch between window mode and line mode.

Changing the language

• CommandLAnguage.

Columns replace

• CommandChange.
• CommandReplace.

Concatenating two records

• CommandCONcat.

Copying columns

• CommandCCopy.

Copying records

117

118 Chapter 4. exaEdit Synopsis

• CommandCOpy.
• Prefix Command" doubles the marked record.

Counting records

• CommandCOUnt num1 [num2].
• See also total number of lines in the status line.

Deleting a record

• Prefix commandd deletes the record of the marked line.
• CommandDElete deletes the record of the current line.
• CommandDL num1 deletes the record with the numbernum1.

Deleting aworkfile

• CommandWF wfname Del.

Deleting all records of aworkfile

• CommandDElete All.

Deleting columns

• CommandCDelete.

Deleting several records

• Prefix commanddn deletesn records starting with the record of the current line.
• Prefix commanddd deletes the area of records labelled with it.
• CommandDElete nnn deletesnnn records starting with the record of the current line.
• CommandDL num1 num2 deletes the records fromnum1 to num2.

Doubling a record

• If the record is in the current line, a simpleCOpy will suffice.
• Prefix command".

Empty line to be inserted

• Compare ‘Inserting an empty line’

Exchanging two records

• If the current line shows the second record, the commandMove p will suffice.

Inserting an empty line

• CommandSSplit generates an empty line before the current line.
• CommandSSplit n with sufficiently largen creates an empty line after the current line.
• CommandInput // generates an empty line after the current line.
• Switch to the insert mode and enter a line that only contains an empty space.
• Prefix commandi creates an empty line below the current line

Line to be deleted

• Compare ‘Deleting a record’.

Lines to be deleted

• Compare ‘Deleting all records of aworkfile’.
• Compare ‘Deleting several records’.

Line to be inserted

• Compare ‘Records to be inserted’.

119

Marking a record

• CommandSET.

Moving Columns

• CommandCMove.

Moving a record

• CommandMove.

Records to be concatenated

• CommandCONCAT concatenates the record of the current line with the following one.

Record to be deleted

• Prefix commandd deletes the record of the marked line.
• CommandDElete deletes the record of the current line.
• CommandDL num1 deletes the record with the numbernum1.

Records to be deleted

• Prefix commanddn deletesn records starting at the record of the current line.
• Prefix commanddd deletes the area of lines marked with it (in preparation).
• CommandDElete nnn deletesnnn records starting with the record of the current line.
• CommandDL num1 num2 deletes the records fromnum1 to num2.

Records to be inserted

• CommandInput /line/ .
• Enter the Input mode (commandInput), hit Enter twice after written a line.

Searching of characters or strings

• CommandLocate to search in forward direction.
• CommandRLocate to search in reverse direction.
• CommandNLocate to search for lines that must not contain the character or string.
• CommandNRLocate or RNLocate for a reverse search for lines that must not contain the character

or string.

Sorting all or some records

• CommandSORT (possibly with parameters).

Splitting a record

• CommandSSplit (with parameters).

Tabulator character to be removed

• CommandEXPAND expands the tab characters to spaces in the specified records.

Tabulator character to be set

• Command COMPRESS compresses adequate sequences of spaces to tab characters in the specified
records.

View help texts

• CommandHelp shows all available commands.
• CommandHelp cmd gives a short help aboutcmd.
• CommandMANual shows the completeexaEdit–manual.

View manual

• CommandMANUAL.

120 Chapter 4. exaEdit Synopsis

Chapter 5

The exaEdit Messages

In this chapter you find most of the messages thatexaEdit can generate listed in an alphabetical order. Beneath the
messages, there are the page(s) that offer a more detailed description.

Page numbers up to 32, including, refer to chapter 2,First Stepswhile the pages from 33 upward belong to chapter 3,
The Editor and its Commands.

... files loaded
40

... subdirectories skipped
40

... times changed
79

1 file loaded
40

1 subdirectory skipped
40

A directory cannot be edited
37, 43

access errno = ...
38, 44

Access not allowed
37, 43

ATTENTION: Data not saved!
26, 43

Begin column larger than end column
This error message can occur with manyexaEdit commands, but is described only here:

If a command needs a parameter which restricts the affected columns, the left column number has to given
prior to the right one. Reversing this leads to the given error message. Mind that the column parameters
may be parameter variables.

Begin of data
This error message can occur with manyexaEdit commands, but is described only here:

A exaEdit positioning command demands that the current line is positioned before the first line of thework-
file. In contrast to searching (see the description ofRLOCATE), it is not possible for positioning commands
to continue with the last line after stepping over the first line of theworkfile.

121

122 Chapter 5. The exaEdit Messages

Bus error
70

Cancelled at recursive X
61, 113

Cancelled at recursive Y
61, 114

Case-insensitive
76

Case-sensitive
76

Changes not saved
26, 44, 86, 101

Character string in all records: ...
96, 97, 98, 99, 105, 105

Character string not found: ...
79, 92, 92, 103, 103

Character string too long
This error message can occur with manyexaEdit commands, but is described only here:

If a exaEdit command needs a string for a parameter, the programming language reserves a certain amount
of memory for that string. If the string is too long to be contained in that memory, the programming
language generates an error. This results in theexaEdit messagestring too long. Since the amount of
memory maximally available is large enough, this does not restrict working withexaEdit.

CODEPAGE is only for Windows systems
81

Compress #...
82

Compressed n times in m records by k blanks
82

Curses: ..., Characters: ..., Escape: ..., Function: ...
68

Data saved
23, 43, 70

Data set may be read only
43

Data set not opened (does not exist?)
38

Directory not found
40, 43

Directory not opened
40

DOS
81

End of data
This error message can occur with manyexaEdit commands, but is described only here:

123

This error message has two possible reasons:

One would be aexaEdit positioning command likeDOWN that demands the current line to be positioned past
the last line of theworkfile. In contrast to searching (see the description ofLOCATE), it is not possible for
positioning commands to continue with the first line after stepping over the last line of theworkfile.

The second possible reason would be a command that tries to obtain data from behind the last line of the
workfile during its execution. This could, for example, happen when you use the commandCHANGE together
with the parametern.

End process
70

Ending ’ missing
37, 43

Enter J or Y to stop:
44, 86, 101

End of data
92, 97, 111

Escape sequences instead of keys: ...
44

exaEdit.dmp [not] opened
70

exaEdit.dmp closed
70

exaEdit.jjjj.mm.tt-hh.mm.ss.wfn.dsn [not] opened
70

exaEdit in line mode
34

exaEdit: Bus error
70

exaEdit: End process
70

exaEdit: Escape sequences instead of keys: ...
44

exaEdit: External command ended
73, 75

exaEdit: Illegal instruction
70

exaEdit: Press Enter, when you have seen everything
73, 75

exaEdit: Segmentation fault
70

n. EXEC line longer than window width ...
87

Expanded n times in m records by k blanks
87

124 Chapter 5. The exaEdit Messages

External command ended
73, 75

F-key is not defined
61

F-key now defined
62

File not found
37, 43

File system may be read only
43

First number larger than second
83, 95, 109

getcwd errno = ...
38, 44

’I’ will be ignored as H is specified
79

Illegal instruction
70

Input
21, 89

Mixed (lower): without translation to capital letters
76

n. EXEC line longer than window width ...
87

New data set, press J or Y to create it:
23, 26, 42

No connection to another computer
37, 43

No file and no directory
37, 43

No Home-directory found for ...
43

Number ... not found
83, 95, 100, 109

Number too large
This error message can occur with manyexaEdit commands, but is described only here:

You have used a parameter variable for a string parameter, but the parameter variable used was defined for
(line) numbers, and not for strings.

Object is no directory
40

Odd number of hex characters
79, 92, 97, 99, 104, 106, 110

Old data set, press J or Y to replace it:
23, 42, 63

125

Parameter variable no character string
This error message can occur with manyexaEdit commands, but is described only here:

You have used a parameter variable for a string parameter, but the parameter variable used was defined for
(line) numbers, and not for strings.

Parameter variable not defined
This error message can occur with manyexaEdit commands, but is described only here:

Parameter variables that are not included inexaEdit by default have to be defined via the command& before
use.

Parameter variable not numerical
This error message can occur with manyexaEdit commands, but is described only here:

You have used a parameter variable for a number parameter (column, line, etc.), but the used parameter
variable was defined for a character string and not for numbers.

Part of the name is no directory
37, 43

Press Enter, when you have seen everything
73, 75

Press J or Y to stop:
26, 44, 86, 101

Press key:
67, 91

Records counted: ..., size of workfile: ...
39

REKEY produces too large number
101

Renumbered
51

Search from begin (wrap)
30, 92, 96

Search from end (wrap)
31, 98, 103, 105

Segmentation fault
70

SEQUENCE exceeds 99999999 or field width
107

SET storage changed, return to previous record
53, 102, 107

SET storage invalid
This error message can occur with manyexaEdit commands, but is described only here:

You have used the symbolic line numberswith a command such asCOPY. s refers to the record that has been
marked with the commandSET. The commandSET has been used in the currentworkfile, but the record
it referred to has been deleted in the meantime. As a consequence, the symbolic line numbers cannot
be used any more. Note that some commands create the messageSET storage changed, return to
previous record instead.

126 Chapter 5. The exaEdit Messages

SET storage unused
This error message can occur with manyexaEdit commands, but is described only here:

You have used the symolic line numbers in a command, e.g.COPY. s refers to the record that has been
marked via theSET command. But this command has either not yet been given in the currentworkfile or
the complete content of theworkfile has been deleted in the meantime. Due to that,s is not defined, so you
receive an error message. The commandRETURN can produce the same error message.

Sorry, I don’t know how to deal with your ’...’ terminal.
34

Sorry, I need to know a more specific terminal type than ”.
34

Sort fields overlap
109

Sorted
108

Source and target area overlap
76, 80

stat errno = ...
38, 44

Target in COPY area
83

Target in MOVE area
95

Target record not found
77, 81

TERM not defined
34

Terminaltype is ...
34

There is no column 0
This error message can occur with manyexaEdit commands, but is described only here:

SomeexaEdit commands need a column specification for a parameter. The columns are counted from
number 1 onwards, a column with the number 0 is not allowed. Mind that a parameter variable also can
have the value 0 and thus result in the given error message.

There is no next record
This error message can occur with manyexaEdit commands, but is described only here:

You have used the symbolic line numbern with a command, e.g.MOVE. n refers to the record following the
current record, but since the current line is the last line of theworkfile, there is no next record.

There is no previous record
This error message can occur with manyexaEdit commands, but is described only here:

You have used the symbolic line numberp with a command, e.g.COUNT. p refers to the line prior to the
current one, but since the current line is the first line of theworkfile, there is no previous record.

Too many symbolic links, refer to itself?
37, 43

127

Translation to lower case
111

Translation to upper case
111

Upper: with translation to capital letters (no German umlauts)
76

WIN
81

Workfile not found
63, 83, 87,??

Workfiles not saved: ...
44, 86, 101

Wrong hex character
79, 92, 97, 99, 104, 106, 110

X is not defined
113

Y is not defined
114

You cannot ... the top line
... can be replaced with:change, concatenate, delete, move or sort.

This error message can occur with manyexaEdit commands, but is described only here:

The execution of the command you have given would concern thetop line, while it is not possible for the
given command to work with thetop line, e.g.copy t 500. This can often be corrected by replacing the
symbolic line numbert, which denotes thetop line, with the symbolic line numberf, which denotes the
first line.

Index

Page numbers up to 32, including, refer to chapter 2,First Steps, while page numbers from 33 upward are part of
chapter 3,The Editor and its Commands.

128

Index

’I’ will be ignored as H is specified, exaEdit message, 79
*, symbolic line number, 30, 83–86, 95
+, exaEdit command, 27, 54, 72, 86, 96
-, exaEdit command, 27, 54, 72, 75, 111
... files loaded, exaEdit message, 40
... subdirectories skipped, exaEdit message, 40
... times changed, exaEdit message, 79
&, exaEdit command, 73
_, exaEdit command, 73, 75
~, character in file names, 36, 42
exaEdit functions, 68
s, symbolic line number, 30
, prefix command, 56, 115
1 file loaded, exaEdit message, 40
1 subdirectory skipped, exaEdit message, 40

A directory cannot be edited, exaEdit message, 37, 43
access errno = ..., exaEdit message, 38, 44
Access not allowed, exaEdit message, 37, 43
al, seealign
align, exaEdit command, 74
ATTENTION: Data not saved

, exaEdit message, 26, 43

b, seebottom
b, symbolic line number, 30, 83–86, 95
ba, seeback
back, exaEdit command, 27, 54, 72, 75, 111
Begin column larger than end column, exaEdit message, 72, 121
Begin of data, exaEdit message, 72, 99, 103, 105, 121
bottom, exaEdit command, 27, 54, 75
Bus error, exaEdit message, 70

c, seechange
ca, seecase
cal, seecall
call, exaEdit command, 73, 75
Cancelled at recursive X, exaEdit message, 61, 113
Cancelled at recursive Y, exaEdit message, 61, 114
case, exaEdit command, 76
Case-insensitive, exaEdit–message, 76
Case-sensitive, exaEdit–message, 76
cc, seeccopy
ccopy, exaEdit command, 76
cd, seecdelete

129

130 Index

cdelete, exaEdit command, 77
change, exaEdit command, 31, 78
Changes not saved, exaEdit message, 26, 44, 86, 101
Character string in all records: ..., exaEdit message, 96–99, 105
Character string not found: ..., exaEdit message, 79, 92, 103
Character string too long, exaEdit message, 72, 122
cm, seecmove
cmd, seecmdsep
cmdsep, exaEdit command, 46, 80
cmove, exaEdit command, 80
co, seecopy
cod, seecodepage
codepage, exaEdit command, 81
CODEPAGE is only for Windows systems, exaEdit message, 81
com, seecompress
Command in error: ..., exaEdit message, 72
Command Storage, 60
compress, exaEdit command, 81
Compress #..., exaEdit message, 82
Compressed n times in m records by k blanks, exaEdit message, 82
con, seeconcat
concat, exaEdit command, 82
copy, exaEdit command, 29, 83
cou, seecount
count, parameter with theLOAD command, 39
count, exaEdit command, 84
Curses, addition to operating system, 33
Curses: ..., Characters: ..., Escape: ..., Function: ..., exaEdit message, 68

d, seedisplay
d, prefix command, 29, 56, 115
Data saved, exaEdit message, 23, 43, 70
Data set may be read only, exaEdit message, 43
Data set not opened (does not exist?), exaEdit message, 38
dd, prefix command, 56, 115
de, seedelete
delete, exaEdit command, 29, 57, 85
deletel, exaEdit command, 29, 57, 85, 86
Directory not found, exaEdit message, 40, 43
Directory not opened, exaEdit message, 40
display, exaEdit command, 60, 85
dl, seedeletel
dl, exaEdit command, 86
do, seedown
DOS, exaEdit message, 81
down, exaEdit command, 27, 54, 72, 86, 96

e, seeend
echo, Unix command, 64
editing blocks, 59
end, exaEdit command, 23, 26, 86, 101
End of data, exaEdit message, 72, 92, 97, 111, 122
End process, exaEdit message, 70
Ending ’ missing, exaEdit message, 37, 43
Enter J or Y to stop:, exaEdit message, 44, 86, 101

Index 131

Escape sequences instead of keys: ..., exaEdit message, 44
ex, seeexec
exaEdit in line mode, exaEdit message, 34
exaEdit.dmp [not] opened, exaEdit message, 70
exaEdit.dmp closed, exaEdit message, 70
exaEdit.jjjj.mm.tt-hh.mm.ss.wfn.dsn [not] opened, exaEdit message, 70
exaEdit: Bus error, exaEdit message, 70
exaEdit: End process, exaEdit message, 70
exaEdit: Escape sequences instead of keys: ..., exaEdit message, 44
exaEdit: External command ended, exaEdit message, 73, 75
exaEdit: Illegal instruction, exaEdit message, 70
exaEdit: Press Enter, when you have seen everything, exaEdit message, 73, 75
exaEdit: Segmentation fault, exaEdit message, 70
EXAEDITIP, environment variable, 64
exec, exaEdit command, 62, 87
n. EXEC line longer than window width ..., exaEdit message, 87
exp, seeexpand
expand, exaEdit command, 87
Expanded n times in m records by k blanks, exaEdit message, 87
export, Unix command, 34
External command ended, exaEdit message, 73, 75

f, symbolic line number, 30, 83–86, 95
F-key is not defined, exaEdit message, 61
F-key now defined, exaEdit message, 62
fil, seefile
file, exaEdit command, 23, 25, 41, 88
1 file loaded, exaEdit message, 40
File not found, exaEdit message, 37, 43
File system may be read only, exaEdit message, 43
... files loaded, exaEdit message, 40
fill, exaEdit command, 88
First number larger than second, exaEdit message, 83, 95, 109
function, specific help text, 88

getcwd errno = ..., exaEdit message, 38, 44

h, seehelp
help, exaEdit command, 31, 88
hex, seehexa
hexa, exaEdit command, 89
HOME directory, 36, 42

i, seeinput
i, prefix command, 56, 115
’I’ will be ignored as H is specified, exaEdit message, 79
ignore n, parameter with theLOAD command, 39
Illegal instruction, exaEdit message, 70
ind, seeindent
indent, exaEdit command, 89
info, specific help text, 88
inl, seeinlength
inlength, exaEdit command, 89
Input, exaEdit message, 21, 89
input, exaEdit command, 20, 28, 89

132 Index

ins, seeinsmode
insmode, exaEdit command, 90
installation profile file, 15, 64

keyb, seekeyboard
keyboard, exaEdit command, 67, 90

l, seelocate
l, symbolic line number, 30, 83–86, 95
la, seelanguage
language, exaEdit command, 91
line mode, 46, 60
loa, seeload
load, exaEdit command, 35, 39, 91
load ... multiple ..., 40
locate, exaEdit command, 30, 31, 91
lw, seelwwidth
lwwidth, exaEdit command, 93

m, seemove
MAIN, workfile name, 34
man, seemanual
manual, exaEdit command, 93
mar, seemark
Messages, 71
minimal abbreviation, 45
Mixed (lower): without translation to capital letters, exaEdit message, 76
move, exaEdit command, 30, 95
multiple, parameter with theLOAD command, 39

n, seenext
n, symbolic line number, 30, 83–86, 95
n. EXEC line longer than window width ..., exaEdit message, 87
New data set, press J or Y to create it:, exaEdit message, 23, 26, 42
next, exaEdit command, 27, 54, 72, 86, 96
nl, seenlocate
nlocate, exaEdit command, 96
No connection to another computer, exaEdit message, 37, 43
No file and no directory, exaEdit message, 37, 43
No Home-directory found for ..., exaEdit message, 43
nrl, seenrlocate
nrlocate, exaEdit command, 98, 104
Number ... not found, exaEdit message, 83, 95, 100, 109
Number 0 not allowed, exaEdit message, 72
Number command,exaEdit command, 28
Number too large, exaEdit message, 72, 124

Object is no directory, exaEdit message, 40
Odd number of hex characters, exaEdit message, 79, 92, 97, 99, 104, 106, 110
Old data set, press J or Y to replace it:, exaEdit message, 23, 42, 63
Operand missing in: ..., exaEdit message, 72

p, symbolic line number, 30, 83–86, 95
Parameter missing, exaEdit message, 72
Parameter variable no character string, exaEdit message, 72, 125
Parameter variable not defined, exaEdit message, 72, 125

Index 133

Parameter variable not numerical, exaEdit message, 72, 125
parameter variables, 63
Part of the name is no directory, exaEdit message, 37, 43
pf, seepfk
pfk, exaEdit command, 99
po, seepoint
point, exaEdit command, 100
prefix commands, 56, 115
Press Enter, when you have seen everything, exaEdit message, 73, 75
Press J or Y to stop:, exaEdit message, 26, 44, 86, 101
Press key:, exaEdit message, 67, 91
pro, seeprofile
profile, exaEdit command, 100
Profile File, 64
profilex, specific help text, 88
Programming the Editor, 60

q, seequit
quie, seequiet
quit, exaEdit command, 23, 26, 86, 101

r, seereplace
Records counted: ..., size of workfile: ..., exaEdit message, 39
records n, parameter with theLOAD command, 39
rek, seerekey
rekey, exaEdit command, 101
REKEY produces too large number, exaEdit message, 101
Renumbered, exaEdit message, 51
replace, exaEdit command, 102
ret, seereturn
return, exaEdit command, 53, 102
rl, seerlocate
rlocate, exaEdit command, 31, 103
rnl, seernlocate
rnlocate, exaEdit command, 98, 104

s, symbolic line number, 83–86, 95
sc, seescope
scope, exaEdit command, 60, 106
se, seesequence
Search from begin (wrap), exaEdit message, 30, 92, 96
Search from end (wrap), exaEdit message, 31, 98, 103, 105
Segmentation fault, exaEdit message, 70
sequence, exaEdit command, 106
SEQUENCE exceeds 99999999 or field width, exaEdit message, 107
set, Unix command, 34
set, exaEdit command, 53, 107
SET storage changed, return to previous record, exaEdit message, 53, 102, 107
SET storage invalid, exaEdit message, 72, 125
SET storage unused, exaEdit message, 72, 126
sk, seeskey
skey, exaEdit command, 107
Sorry, I don’t know how to deal with your ’...’ terminal., exaEdit message, 34
Sorry, I need to know a more specific terminal type than ”., exaEdit message, 34
sort, exaEdit command, 108

134 Index

Sort fields overlap, exaEdit message, 109
Sorted, exaEdit message, 108
Source and target area overlap, exaEdit message, 76, 80
ss, seessplit
ssplit, exaEdit command, 109
stat errno = ..., exaEdit message, 38, 44
... subdirectories skipped, exaEdit message, 40
1 subdirectory skipped, exaEdit message, 40
symbolic, specific help text, 88
symbolic line numbers, 30, 83–86, 95

t, seetop
t, symbolic line number, 30, 83–86, 95
Target in COPY area, exaEdit message, 83
Target in MOVE area, exaEdit message, 95
Target record not found, exaEdit message, 77, 81
te, seetest
TERM, environment variable, 34, 67
TERM not defined, exaEdit message, 34
Terminaltype is ..., exaEdit message, 34
test, exaEdit command, 111
There is no such command, exaEdit message, 72
There is no column 0, exaEdit message, 72, 126
There is no next record, exaEdit message, 72, 126
There is no previous record, exaEdit message, 72, 126
tilde, 36, 42
... times changed, exaEdit message, 79
Too many symbolic links, refer to itself?, exaEdit message, 37, 43
top, exaEdit command, 27, 54, 111
top line, 19, 35
tr, seetranslat
translat, exaEdit command, 111
Translation to lower case, exaEdit message, 111
Translation to upper case, exaEdit message, 111

u, seeup
up, exaEdit command, 27, 54, 72, 75, 111
Upper: with translation to capital letters (no German umlauts), exaEdit message, 76

wf, seeworkfile
width, parameter with theLOAD command, 38
width, exaEdit command, 112
WIN, exaEdit message, 81
workfile, exaEdit command, 35, 112
workfile, 12, 18, 19, 34
Workfile not found, exaEdit message, 63, 83, 87
Workfiles not saved: ..., exaEdit message, 44, 86, 101
wra, seewrap
wrap, exaEdit command, 113
Wrong hex character, exaEdit message, 79, 92, 97, 99, 104, 106, 110
Wrong parameter, exaEdit message, 72

x, exaEdit command, 60, 113
X is not defined, exaEdit message, 113

y, exaEdit command, 114

Index 135

Y is not defined, exaEdit message, 114
You cannot ... the top line, exaEdit message, 72, 127

z, seezone
zone, exaEdit command, 115

